

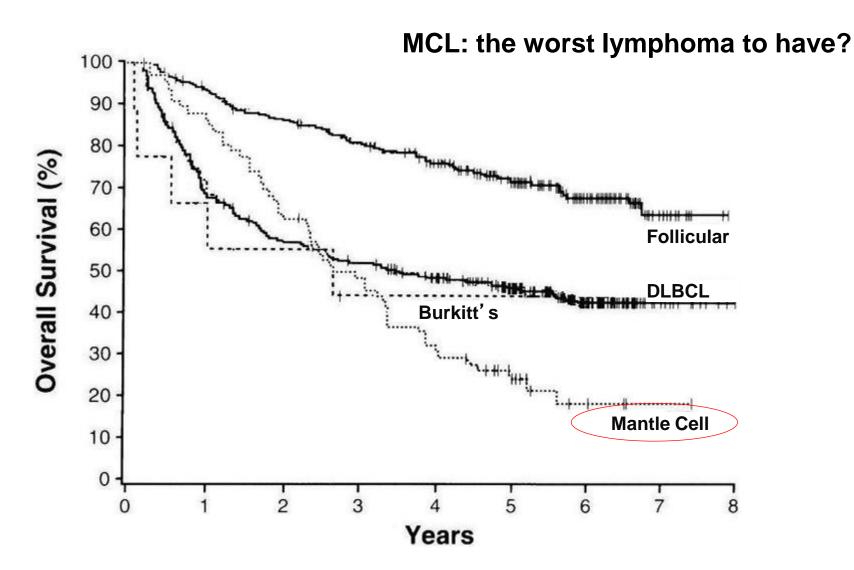
ALGORITMO DI TRATTAMENTO NEL LINFOMA MANTELLARE

Simone Ferrero, MD

Divisione di Ematologia Universitaria Dipartimento di Biotecnologie Molecolari e Scienze per la Salute Università di Torino e la storia continua...

migliorando

Starhotels E.C.HO.

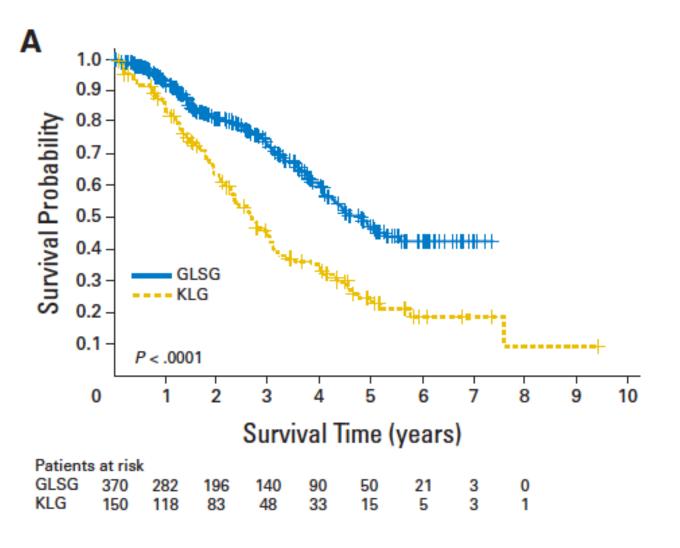

Milano, 6 febbraio 2025

Disclosures of Simone Ferrero

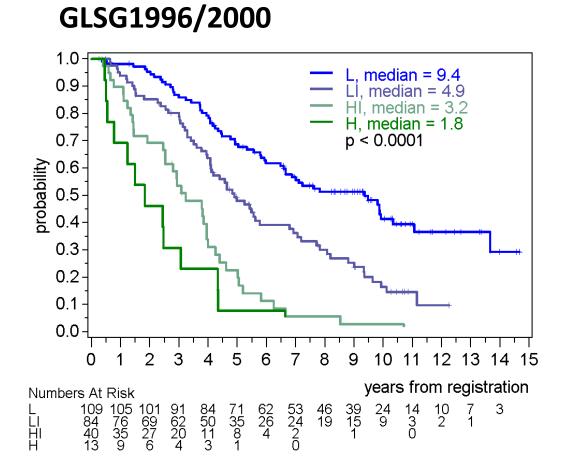
Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other (travel expenses)
Janssen	x		x		х	х	
EUSA Pharma			x		х	х	
Morphosys	x						
Incyte	x					х	
Gilead	x				х		
Abbvie			x			х	
Roche					х	х	
Eli Lilly					x		x
Astra Zeneca						х	
Gentili					x		
Italfarmaco						х	
Sandoz			x		х		
Beigene					x		
Recordati			x		х	х	
Novartis					x		x
Takeda							x

NHL: clinical outcome in the Nineties

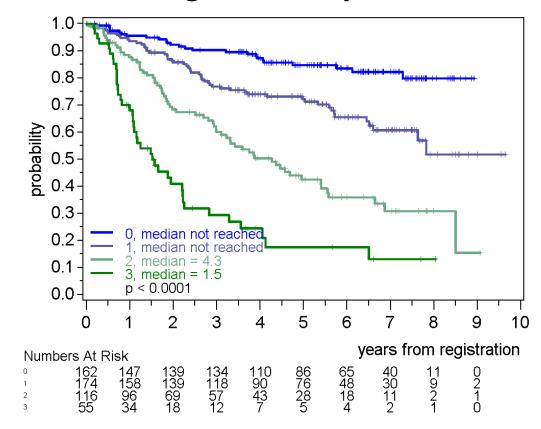
MCL: improved OS thanks to rituximab, high-dose ara-c and ASCT


VOLUME 27 · NUMBER 4 · FEBRUARY 1 2009

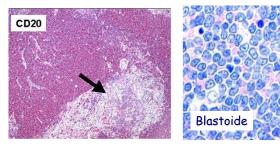
JOURNAL OF CLINICAL ONCOLOGY


ORIGINAL REPORT

Improvement of Overall Survival in Advanced Stage Mantle Cell Lymphoma

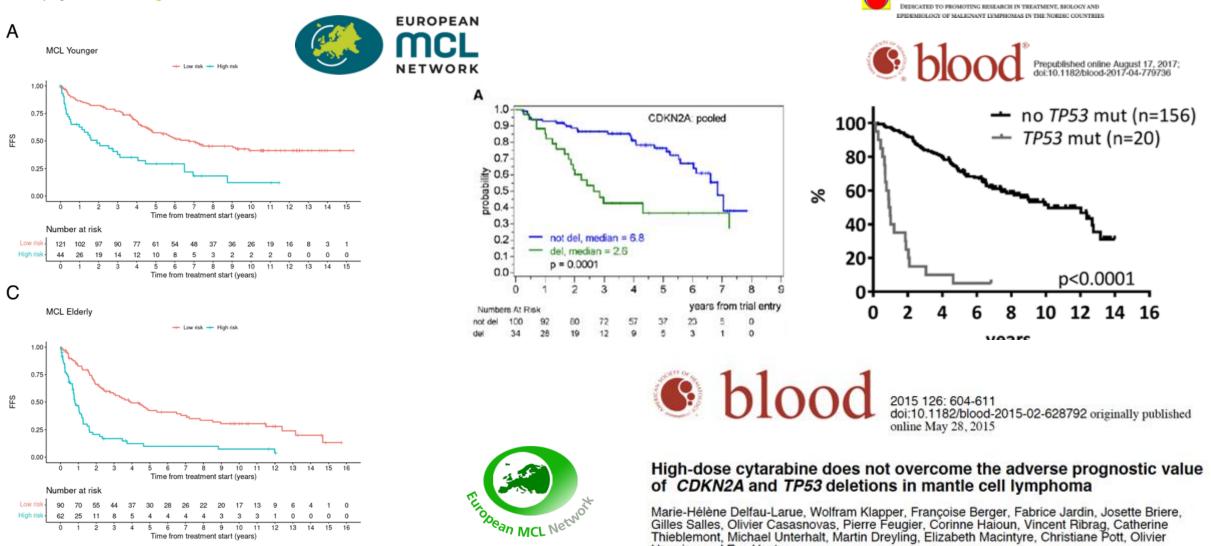

Annina Herrmann, Eva Hoster, Thomas Zwingers, Günter Brittinger, Marianne Engelhard, Peter Meusers, Marcel Reiser, Roswitha Forstpointner, Bernd Metzner, Norma Peter, Bernhard Wörmann, Lorenz Trümper, Michael Pfreundschuh, Hermann Einsele, Wolfgang Hiddemann, Michael Unterhalt, and Martin Dreyling

MCL is an heterogeneous disease (clinics) -> MIPI-c



MCL Younger & Elderly

Age, y	ECOG	LDHULN	WBC, 10%L
<50	0-1	<0.67	< 6.700
50-59	_	0.67-0.99	6.700-9.999
60-69	2-4	1.000 -1.49	1.000-14.999
≥70	_	≥1.5000	≥15000
	<50 50-59 60-69	<50 0-1 50-59 — 60-69 2-4	<50 0-1 <0.67 50-59 0.67-0.99 60-69 2-4 1.000 - 1.49

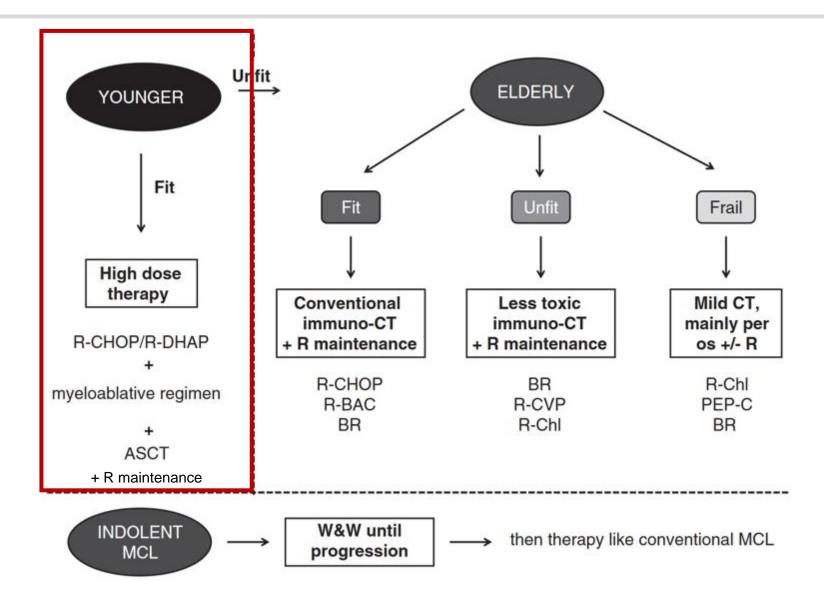

Hoster E. et al, JCO2014

Clinical outcome of Mantle Cell Lymphoma patients with high-risk disease (high-risk MIPI-c or high p53 expression)

MCL is an heterogeneous disease (**biology**)

NORDIC LYMPHOMA GROUP

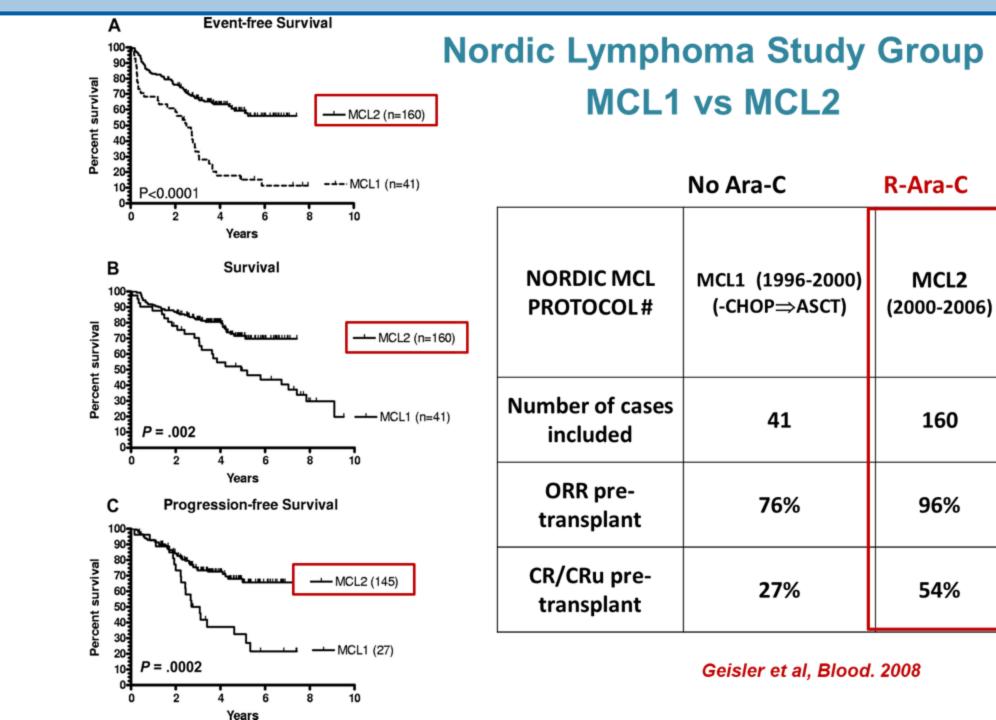
Gabriel Scheubeck^{1™}, Linmiao Jiang², Olivier Hermine³, Hanneke C. Kluin-Nelemans⁴, Christian Schmidt¹, Michael Unterhalt¹, Andreas Rosenwald⁵, Wolfram Klapper ⁶, Andrea Evangelista⁷, Marco Ladetto⁸, Mats Jerkeman ⁹, Simone Ferrero ¹⁰, Martin Dreyling^{1,11} and Eva Hoster (12,11)

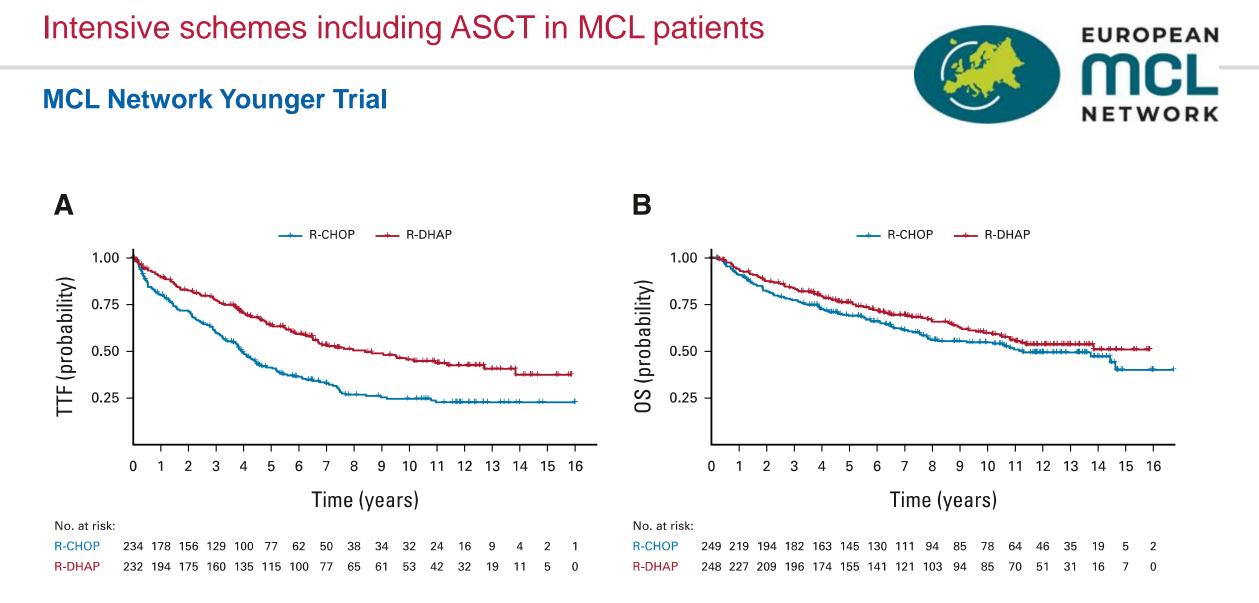


Hermine and Eva Hoster

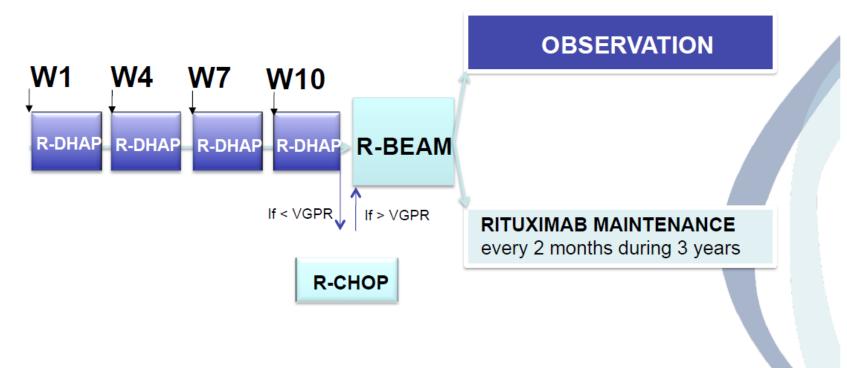
Leukemia 26 July 2023

Time from treatment start (years)


Therapeutic algorithm for first-line MCL patients: younger patients



Therapeutic strategies in MCL younger fit patients (< 65 y.o)

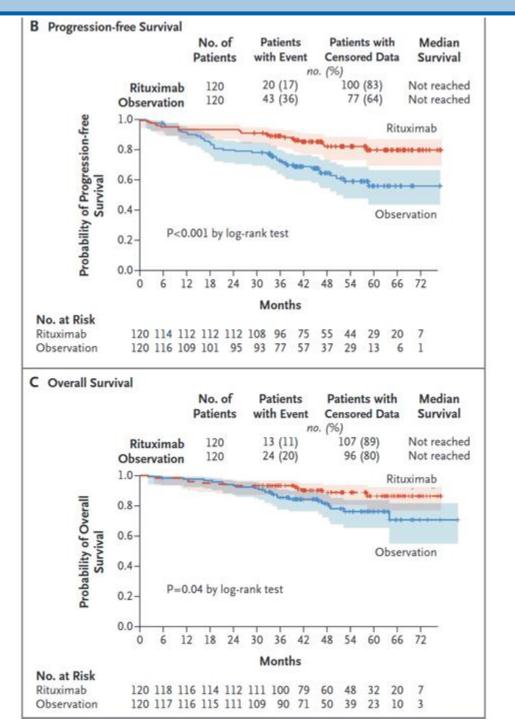

+ maintenance....

Hermine O, et al. Lancet 2016: JCO 2023

Rituximab maintenance after R-DHAP and ASCT in young untreated MCL: LyMa trial

R-DHAP: Rituximab 375mg/m2; aracytine 2g/m2 x2 IV 3 hours injection 12hours interval; dexamethasone 40mg d1-4; Cisplatin 100mg/m2 d1 (or oxaliplatin or carboplatin)

R-BEAM: Rituximab 500mg/m2 d-8; BCNU 300mg/m2 d-7; Etoposide 400mg/m2/d d-6 to -3; aracytine 400mg/m2/d d-6 to d-3; melphalan 140mg/m2 d-2

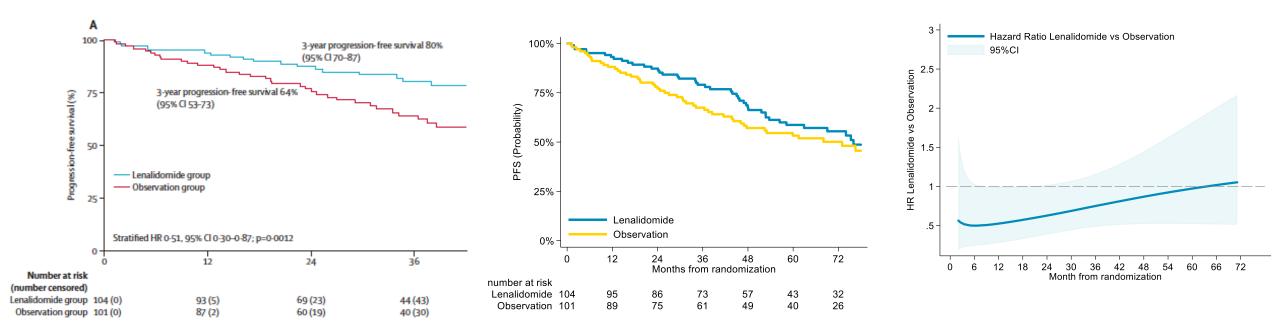

The NEW ENGLAND JOURNAL of MEDICINE N ENGLJ MED 377;13 NEJM.ORG SEPTEMBER 28, 2017

ORIGINAL ARTICLE

Rituximab after Autologous Stem-Cell Transplantation in Mantle-Cell Lymphoma

S. Le Gouill, C. Thieblemont, L. Oberic, A. Moreau, K. Bouabdallah, C. Dartigeas,
G. Damaj, T. Gastinne, V. Ribrag, P. Feugier, O. Casasnovas, H. Zerazhi,
C. Haioun, H. Maisonneuve, R. Houot, F. Jardin, E. Van Den Neste,
O. Tournilhac, K. Le Dû, F. Morschhauser, G. Cartron, L.-M. Fornecker,
D. Canioni, M. Callanan, M.C. Béné, G. Salles, H. Tilly, T. Lamy, R. Gressin,
and O. Hermine, for the LYSA Group*

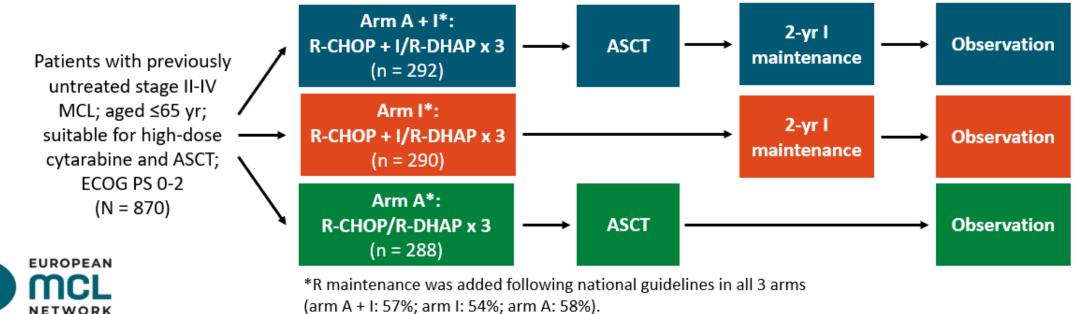
- 299 patients younger than 66 years of age enrolled at MCL diagnosis
- Overall response rate = 89%,
- Complete response rate = 77%.
- ASCT performed in 257 patients.


Lenalidomide maintenance after ASCT: the FIL MCL0208 phase III trial

THE LANCET Haematology

Lancet Haematol 2021; 8: e34–44 Lenalidomide maintenance after autologous haematopoietic stem-cell transplantation in mantle cell lymphoma: results of a Fondazione Italiana Linfomi (FIL) multicentre, randomised, phase 3 trial

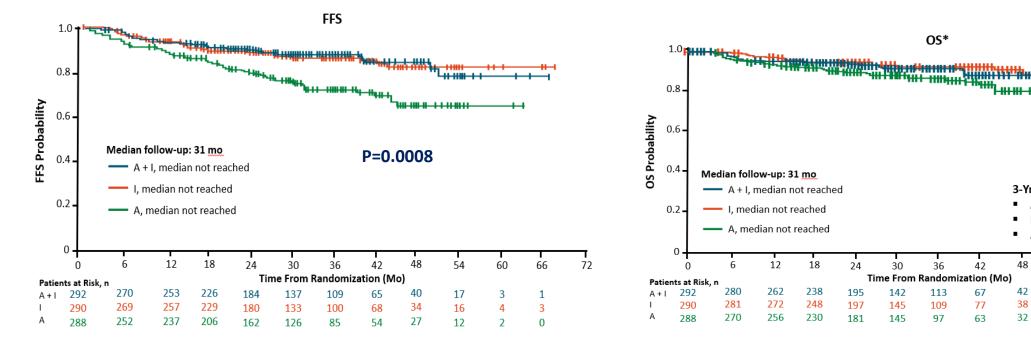
Marco Ladetto*, Sergio Cortelazzo*, Simone Ferrero, Andrea Evangelista, Michael Mian, Rita Tavarozzi, Manuela Zanni, Federica Cavallo, Alice Di Rocco, Vittorio Stefoni, Chiara Pagani, Alessandro Re, Annalisa Chiappella, Monica Balzarotti, Vittorio R Zilioli, Maria Gomes da Silva, Luca Arcaini, Anna L Molinari, Filippo Ballerini, Andrés J M Ferreri, Benedetta Puccini, Fabio Benedetti, Piero M Stefani, Franco Narni, Ivana Casaroli, Caterina Stelitano, Giovannino Ciccone, Umberto Vitolo, Maurizio Martelli


Ladetto M, et al. Lancet Haematol 2021

median follow-up: 74 months

TRIANGLE: phase III Trial of Ibrutinib + CIT

Randomized, open-label, 3-arm phase III trial



(arm A + I: 57%; arm I: 54%; arm A: 58%).

Primary endpoint: FFS

Secondary endpoints: response rates, PFS, RD, OS, safety

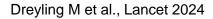
TRIANGLE trial: FFS (Primary Endpoint) and OS

Test A+I vs I ongoing

EUROPEAN

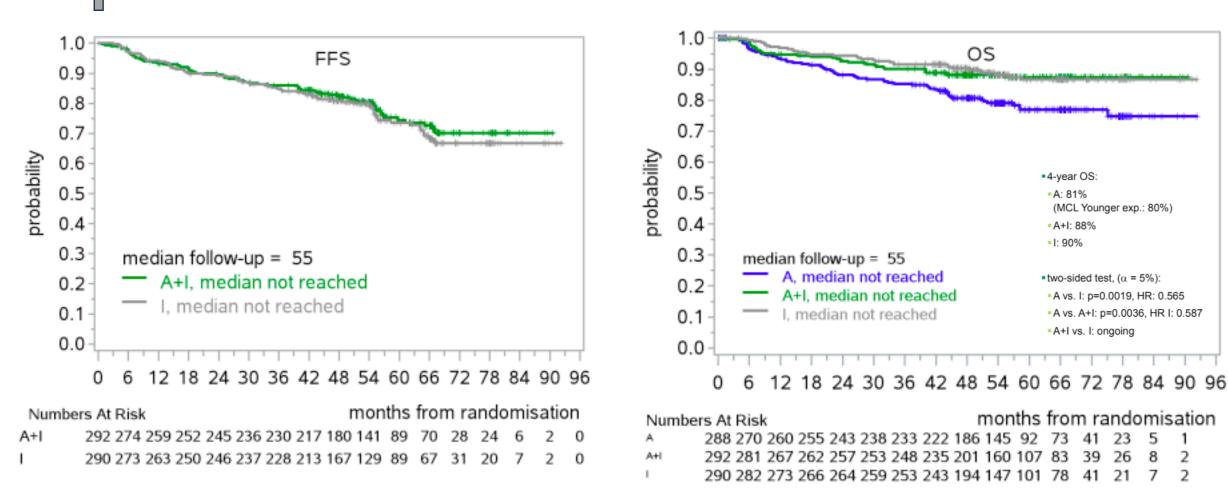
NETWORK

Data still premature to evaluate statistical significance for OS


OS*

3-Yr OS Rate

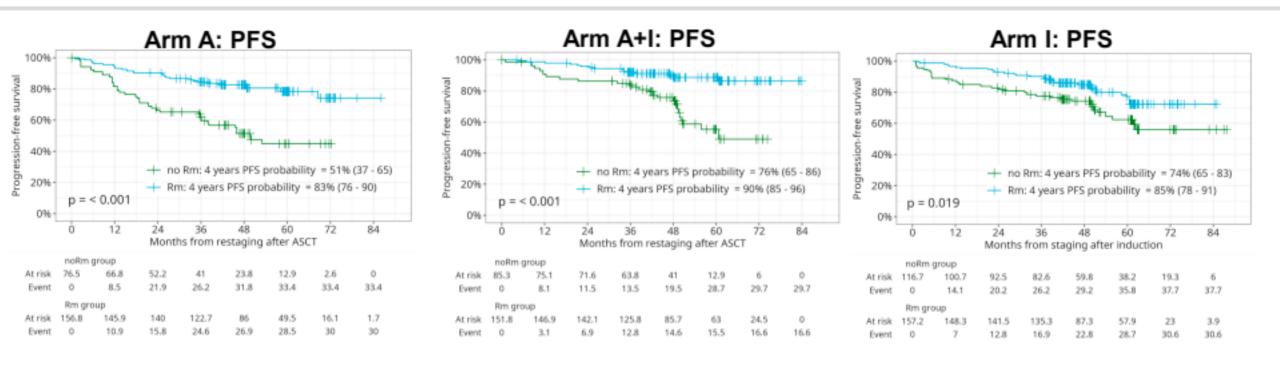
A + I: 91%


I: 92%

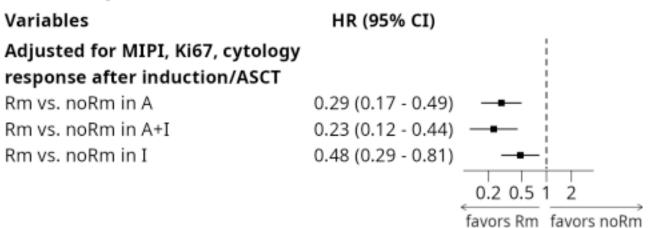
A: 86%

TRIANGLE trial updated: FFS (comparison experimental arms) and OS

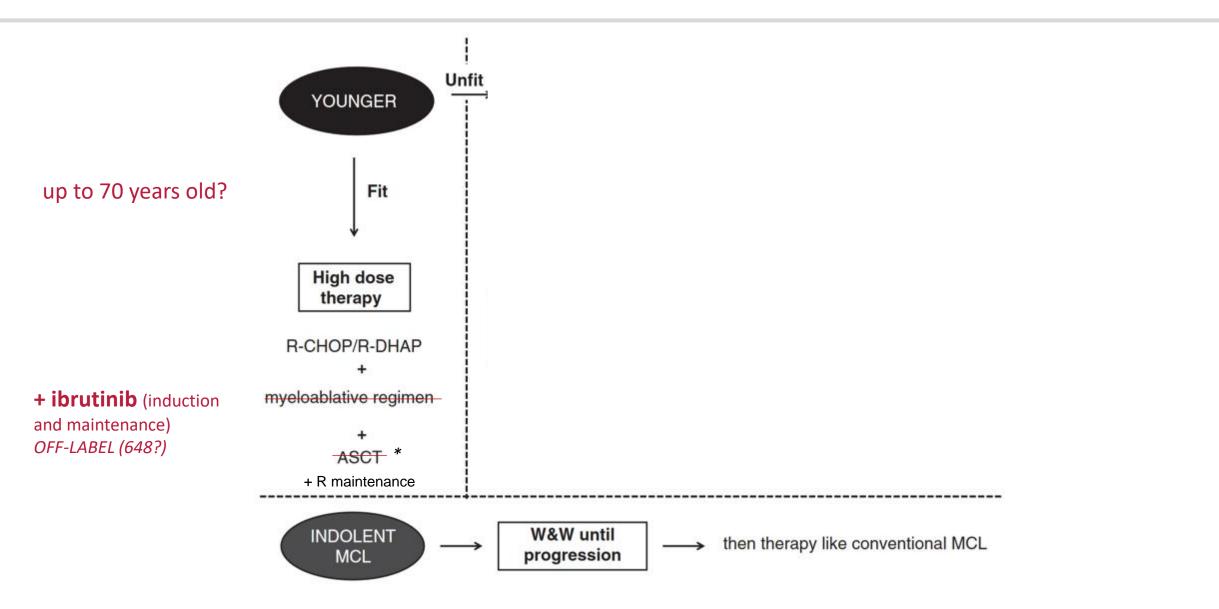
« [...] Arm I (A+I) may represent the preferred first-line treatment in younger MCL patients [...]»



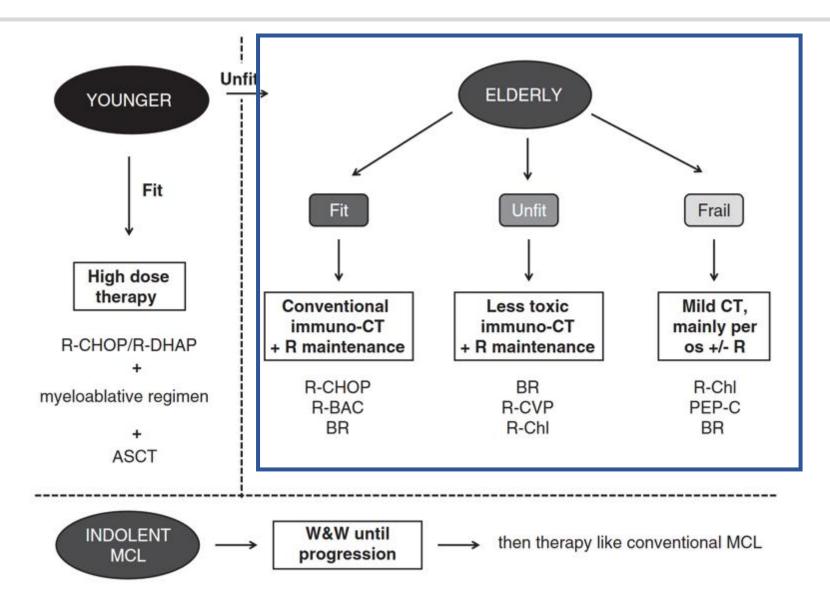
longer follow-up (from 31 to 55 months)


TRIANGLE trial updated: impact of rituximab maintenance

EUROPEAN


NETWORK

Endpoint PFS from end of induction/ASCT

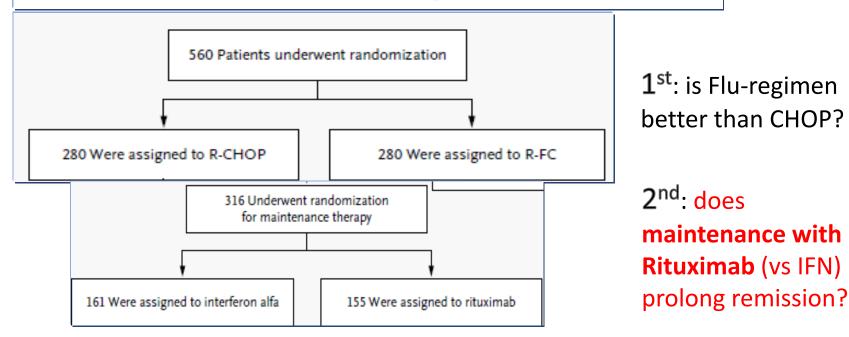

Therapeutic algorithm for first-line MCL patients: younger patients

(*A+I displays a superiority trend in HR groups but has a worse toxicity profile than I)

Modified from M Dreyling, S Ferrero and O Hermine, Leukemia 2014

Therapeutic algorithm for first-line MCL patients: elderly patients

The NEW ENGLAND JOURNAL of MEDICINE


ORIGINAL ARTICLE

Treatment of Older Patients with Mantle-Cell Lymphoma

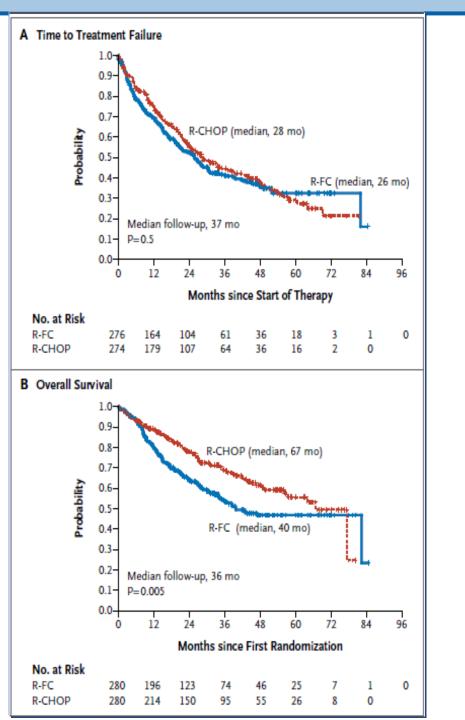
H.C. Kluin-Nelemans, E. Hoster, O. Hermine, J. Walewski, M. Trneny,
C.H. Geisler, S. Stilgenbauer, C. Thieblemont, U. Vehling-Kaiser, J.K. Doorduijn,
B. Coiffier, R. Forstpointner, H. Tilly, L. Kanz, P. Feugier, M. Szymczyk, M. Hallek,
S. Kremers, G. Lepeu, L. Sanhes, J.M. Zijlstra, R. Bouabdallah, P.J. Lugtenburg,
M. Macro, M. Pfreundschuh, V. Procházka, F. Di Raimondo, V. Ribrag,
M. Uppenkamp, M. André, W. Klapper, W. Hiddemann, M. Unterhalt,
and M.H. Dreyling

MCL Network Elderly Trial

≥60 years

R-CHOP vs R-FC in elderly patients with MCL

	ORR	CR
	(%)	(%)
R-CHOP	86	34
R-FC	78	40


P=0.06 P=0.10

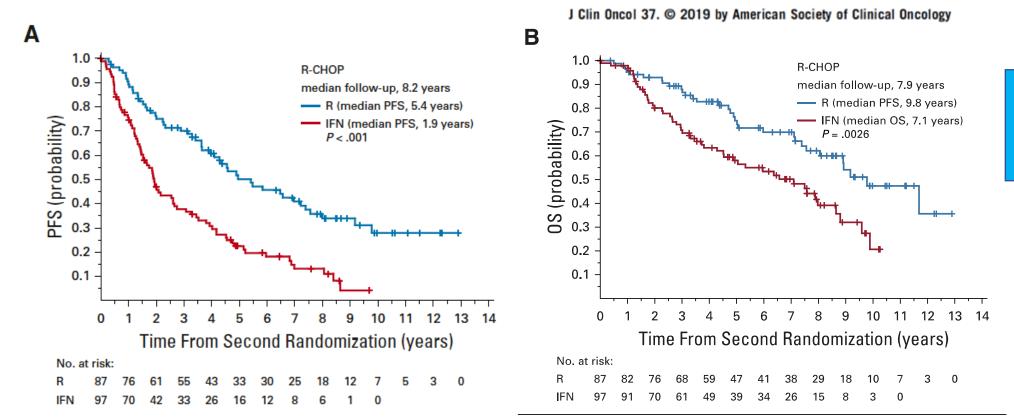
Cause of death	R-FC	R-CHOP
Died in CR/PR	10%	4%
Infections	7%	4%
Second cancer	3%	1%

EUROPEAN MCL NETWORK

MCL Network Elderly Trial

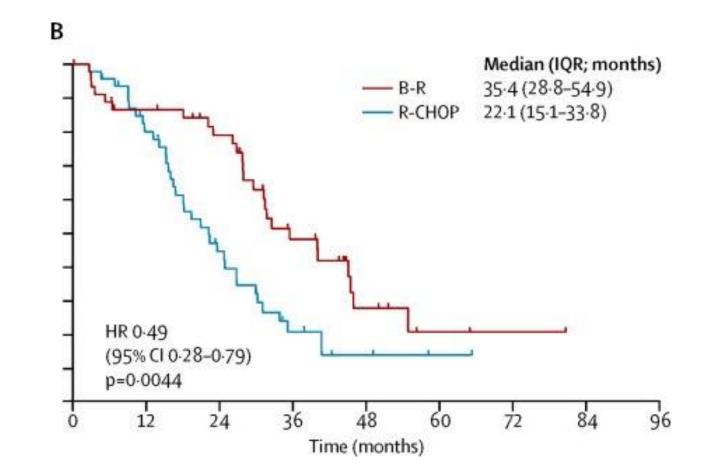
Kluin-Nelemans HC et al. NEJM 2012;367:520-31

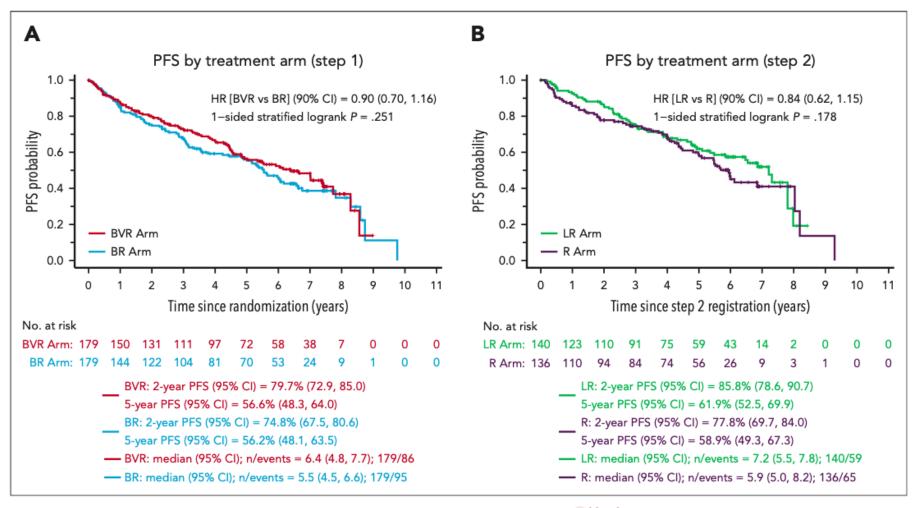
Treatment of Older Patients With Mantle Cell Lymphoma (MCL): Long-Term Follow-Up of the Randomized European MCL Elderly Trial


Hanneke C. Kluin-Nelemans, MD, PhD¹; Eva Hoster, PhD²; Olivier Hermine, MD, PhD³; Jan Walewski, MD, PhD, DSc⁴; Christian H. Geisler, MD, PhD⁵; Marek Trneny, MD, PhD⁶; Stephan Stilgenbauer, MD⁷; Florian Kaiser, MD⁸; Jeanette K. Doorduijn, MD, PhD⁹; Gilles Salles, MD, PhD¹⁰; Michal Szymczyk, MD⁴; Hervé Tilly, MD¹¹; Lothar Kanz, MD¹²; Christian Schmidt, MD²; Pierre Feugier, MD¹³; Catherine Thieblemont, MD, PhD¹⁴; Josée M. Zijlstra, MD, PhD¹⁵; Vincent Ribrag, MD¹⁶; Wolfram Klapper, MD¹⁷; Christiane Pott, MD, PhD¹⁸; Michael Unterhalt, MD, PhD²; and Martin H. Dreyling, MD, PhD²

MCL Network Elderly Trial

R-chemo + R


maintenance


Bendamustine plus Rituximab vs CHOP plus Rituximab

	Grade 3-4	
	R-CHOP	B-R
Leucocytopenia	181 (72%)*	98 (37%)*
Neutropenia	173 (69%)*	77 (29%)*
Lymphocytopenia	106 (43%)	196 (74%)
Anaemia	12 (5%)	8 (3%)
Thrombocytopenia	16 (6%)	13 (5%)

	B-R (n=261)	R-CHOP (n=253)	p value
Alopecia	0	245 (100%)*	<0.0001
Paresthesia	18 (7%)	73 (29%)	<0.0001
Stomatitis	16 (6%)	47 (19%)	<0.0001
Skin (erythema)	42 (16%)	23 (9%)	0.024
Skin (allergic reaction)	40 (15%)	15 (6%)	0.0006
Infectious episodes	96 (37%)	127 (50%)	0.0025
Sepsis	1 (<1%)	8 (3%)	0.019

BR + <u>R maintenance</u> (L648) is an effective induction regimen in MCL

Blood* 5 SEPTEMBER 2024 | VOLUME 144, NUMBER 10 1089

BR + R median PFS = 5.5 years

Carlo Visco | University of Verona

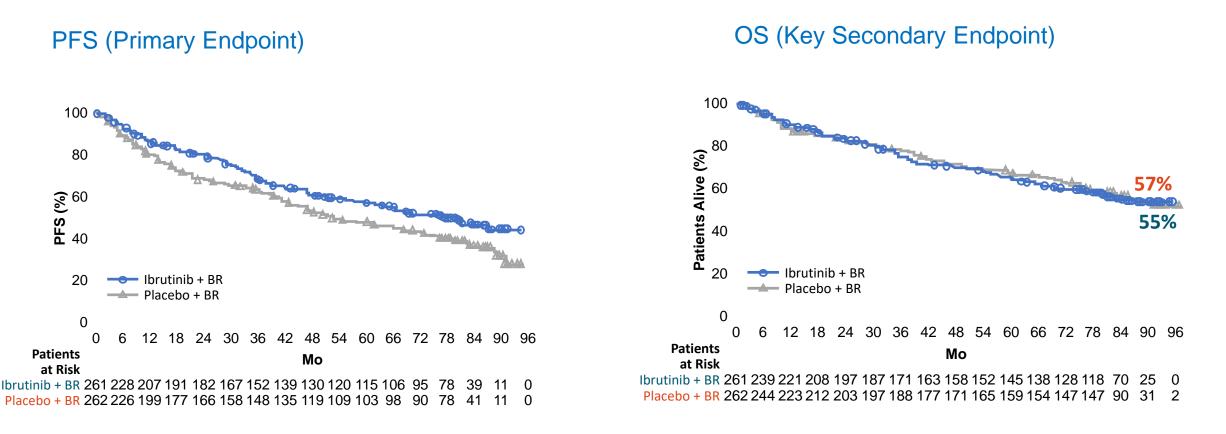
More is not always better

Smith M et al., Blood 2024

BR vs BR + ibrutinib «SHINE trial»

SHINE: Study Design

• Multicenter, randomized, double-blind, placebo-controlled phase III trial


Stratification by: MIPI score (low vs intermediate vs high)

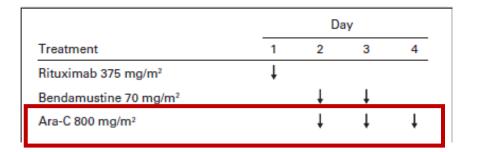
Patients ≥65 yr of age with previously untreated stage II-IV MCL, no planned SCT (N = 523)	BR induction for 6 cycles	lf CR or PR	R maintenance Q8W for 12 cycles		
	Ibrutinib 560 mg QD until PD or unacceptable toxicity				
	BR induction for 6 cycles	If CR or PR	R maintenance Q8W for 12 cycles		
	Placebo u	ntil PD or unacce	ptable toxicity		

- Primary endpoint: investigator-assessed PFS (in ITT)
- Key secondary endpoints: ORR, time to next treatment, OS, safety

SHINE TRIAL: BR +/- ibrutinib

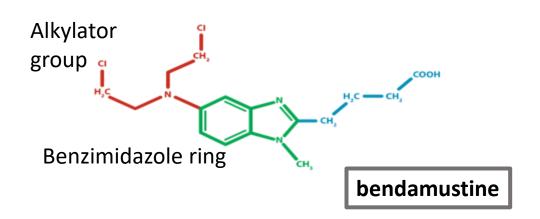
(off-label)

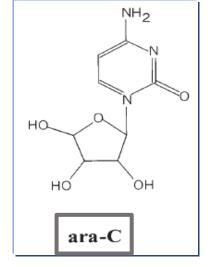
- Median follow-up: 84.7 mo (7.1 yr)
- "[...] A 2.3-yr statistically significant and clinically meaningful improvement in median PFS was observed in the ibrutinib arm (80.6 months) vs the placebo arm (52.9 months) [...]"


The NEW ENGLAND JOURNAL of MEDICINE

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT


Combination of Rituximab, Bendamustine, and Cytarabine for Patients With Mantle-Cell Non-Hodgkin Lymphoma Ineligible for Intensive Regimens or Autologous Transplantation

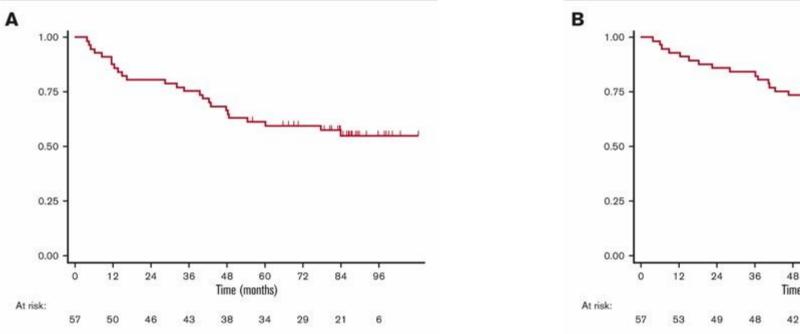

Carlo Visco, Silvia Finotto, Renato Zambello, Rossella Paolini, Andrea Menin, Roberta Zanotti, Francesco Zaja, Gianpietro Semenzato, Giovanni Pizzolo, Emanuele S.G. D'Amore, and Francesco Rodeghiero

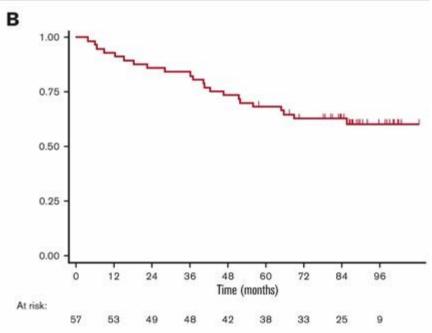
	ORR	CR
	(%)	(%)
Untreated	100	95

	Overall				
	Cycles (N	V = 182)	Patients	(N = 40)	
Grade 3 or 4 Event	No.	%	No.	%	
Leukopenia	87	48	23	57	
Neutropenia	56	31	16	40	
Febrile neutropenia	7	4	5	12	
Thrombocytopenia	138	76	35	87	
Anemia	48	26	18	45	

Original R-BAC schedule (800)

CLINICAL TRIALS AND OBSERVATIONS | JULY 27, 2023


Long-term follow-up of rituximab plus bendamustine and cytarabine in older patients with newly diagnosed MCL


U Clinical Trials & Observations

Maria Chiara Tisi, Riccardo Moia, Caterina Patti, Andrea Evangelista, Simone Ferrero, Michele Spina, Monica Tani, Barbara Botto, Melania Celli, Benedetta Puccini, Emanuele Cencini, Alice Di Rocco, Claudio Chini, Chiara Ghiggi, Renato Zambello, Manuela Zanni, Roberta Sciarra, Riccardo Bruna, Martina Ferrante, Stefano Alessandro Pileri, Francesca Maria Quaglia, Caterina Stelitano, Alessandro Re, Stefano Volpetti, Vittorio Ruggero Zilioli, Annalisa Arcari, Francesco Merli, Carlo Visco

PFS of all patients (7-year PFS, 55% [95% CI, 41-67])

OS of all patients (7-year OS, 63% [95% CI, 49-74])

Survival curves at a median follow-up of 86 months

FIL R-BAC 500 trial

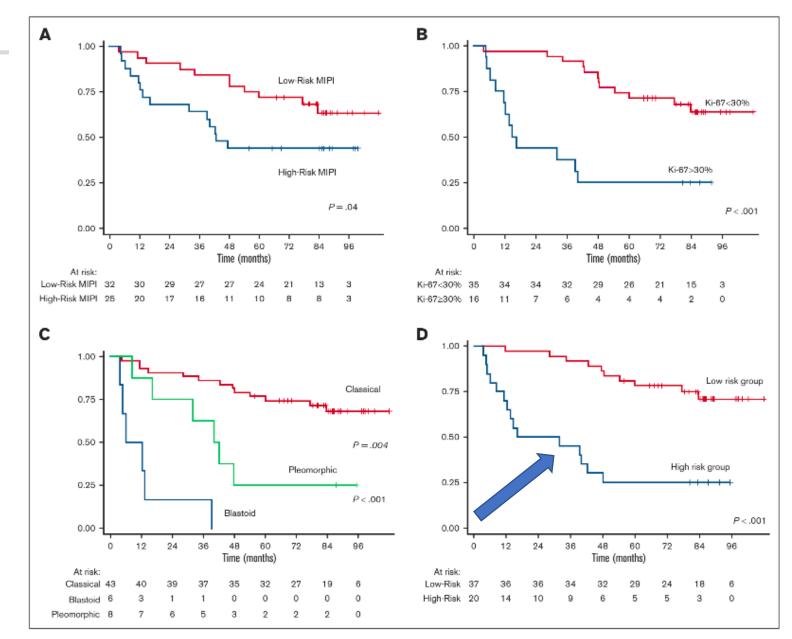
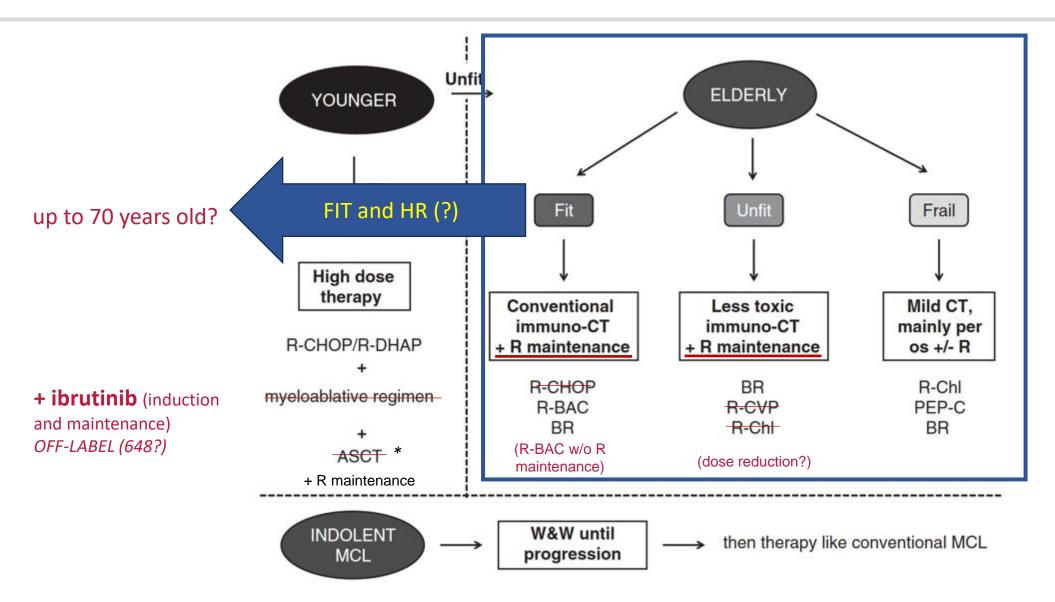
Solution blood advances JULY 27, 2023

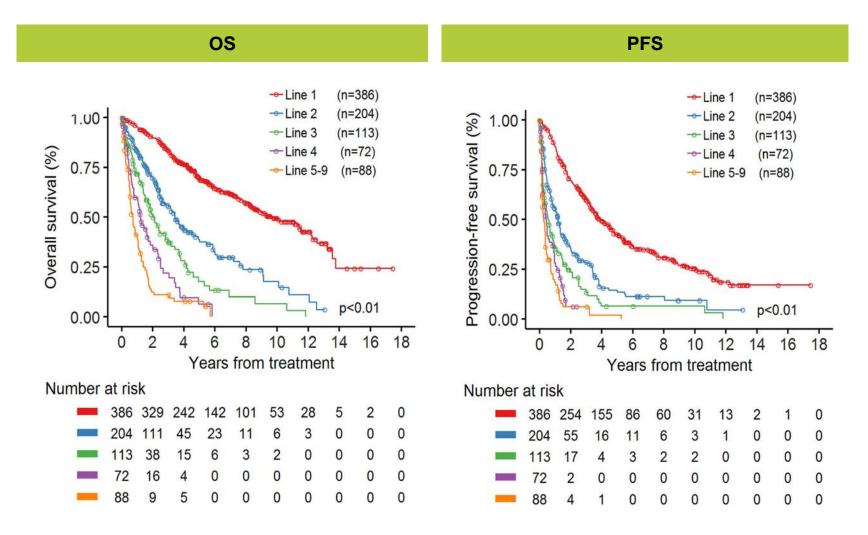
Long-term follow-up of rituximab plus bendamustine and cytarabine in older patients with newly diagnosed MCL

Maria Chiara Tisi,¹ Riccardo Moia,² Caterina Patti,³ Andrea Evangelista,⁴ Simone Ferrero,⁵ Michele Spina,⁶ Monica Tani,⁷ Barbara Botto,⁸ Melania Celli,⁹ Benedetta Puccini,¹⁰ Emanuele Cencini,¹¹ Alice Di Rocco,¹² Claudio Chini,¹³ Chiara Ghiggi,¹⁴ Renato Zambello,¹⁵ Manuela Zanni,¹⁶ Roberta Sciarra,¹⁷ Riccardo Bruna,² Martina Ferrante,¹⁸ Stefano Alessandro Pileri,¹⁹ Francesca Maria Quaglia,²⁰ Caterina Stelitano,²¹ Alessandro Re,²² Stefano Volpetti,²³ Vittorio Ruggero Zilioli,²⁴ Annalisa Arcari,²⁵ Francesco Merli,²⁶ and Carlo Visco²⁰

Survival curves at a median follow-up of 86 months

R-BAC500


Figure 2. Survival curves for PFS. (A) MIPI score, (B) Ki67 value, (C) morphological variant, (D) or risk group defined as follows: low-risk (Ki67 < 30% and classical morphological variant); high-risk group (Ki67 ≥ 30% and/or blastoid/pleomorphic morphological variant).

Therapeutic algorithm for first-line MCL patients: elderly patients

MCL: overall outcome after first line

OS and PFS in Patients with MCL After Multiple Lines of Therapy

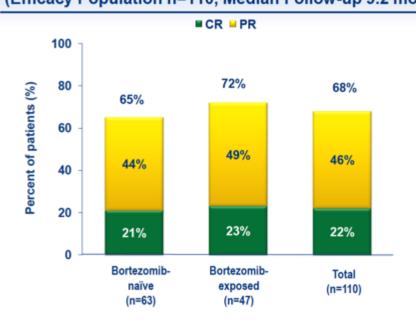
Treatment outcomes decline with successive lines of therapy, with a <u>progressive</u> <u>shortening in the response</u> <u>duration and survival</u> after each line of therapy

•

Current Treatment in Mantle Cell Lymphoma

Preferred	Aggressive Chemotherapy R-DHAP (cisplatin, or oxaliplatin) R-CHOP/R-DHAP (alternating) NORDIC (maxi-CHOP/R + HD cytarabine)	 Consolidation and Maintenance HDT + ASCT → R maint for 3 yr
First-line Treatment Options	Less Aggressive Chemotherapy BR R-CHOP RBAC	<u>Maintenance</u> After R-CHOP: R maint until Progression.
Preferred Second-line Treatment Options	Covalent BTK inhibitor Ibrutinib	
Third-line Treatment	 CAR-T Brexucabtagene autoleucel (after of Non covalent BTK inhibitor: Pirtobrutinib (after covalent BTK in 	herapy and BTK inhibitor – by 3L)

Ibrutinib for relapsed/refractory MCL

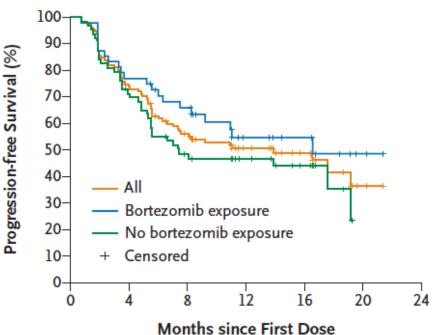

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

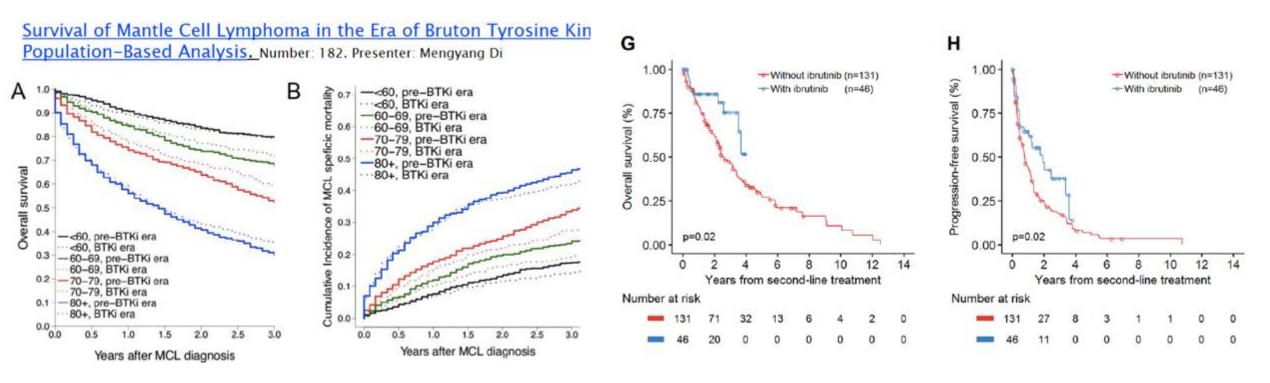
Targeting BTK with Ibrutinib in Relapsed or Refractory Mantle-Cell Lymphoma

Michael L. Wang, M.D., Simon Rule, M.D., Peter Martin, M.D., Andre Goy, M.D., Rebecca Auer, M.D., Ph.D., Brad S. Kahl, M.D., Wojciech Jurczak, M.D., Ph.D., Ranjana H. Advani, M.D., Jorge E. Romaguera, M.D., Michael E. Williams, M.D., Jacqueline C. Barrientos, M.D., Ewa Chmielowska, M.D., John Radford, M.D.,

Best Response

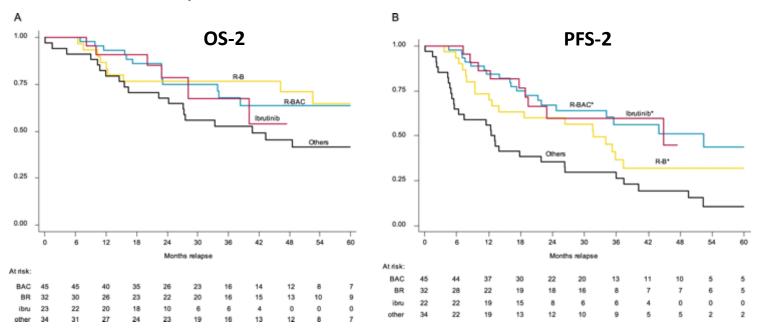


auer, M.D., Martin Dreyling, M.D., Wieslaw Wiktor Jedrzejczak ohnson, M.D., Stephen E. Spurgeon, M.D., Lei Li, Ph.D., (Efficacy Population n=110, Median Follow-up 9.2 mo) ing, M.D., Ph.D., Kate Newberry, Ph.D., Zhishuo Ou, M.D., 1.S., Bingliang Fang, Ph.D., Jesse McGreivy, M.D., Fong Clow, y, Ph.D., Betty Y. Chang, Ph.D., Darrin M. Beaupre, M.D., P

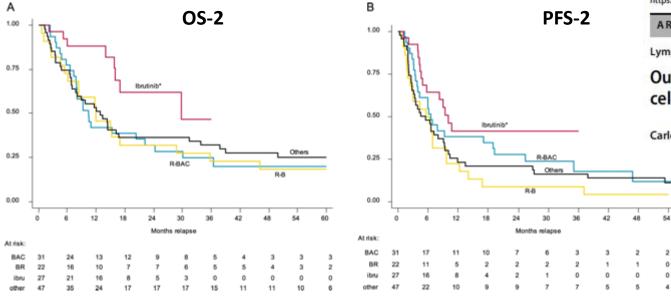

Lori A. Kunkel, M.D., and Kristie A. Blum, M.D.

This article was published on June 19, 2013, at NEJM.org.

N Engl | Med 2013. DOI: 10.1056/NEJMoa1306220 Copyright (2) 2013 Manachusetts Medical Society.


Ibrutinib and **survival** in MCL

Kumar et al. Blood Cancer Journal (2019)9:50 https://doi.org/10.1038/s41408-019-0209-5

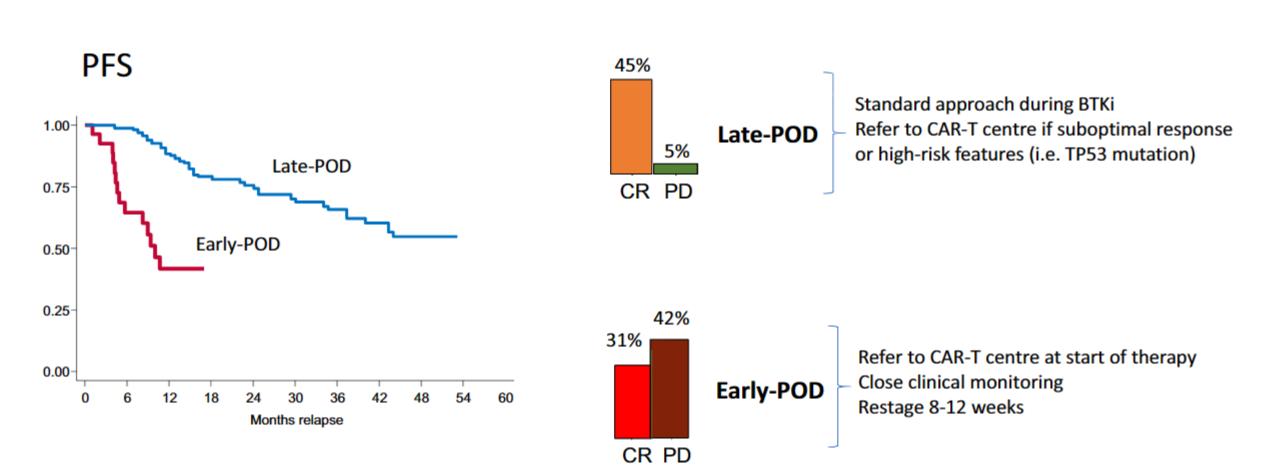

Survival curves for patients with late-POD.

Ibrutinib as best second line for both early and late POD patients

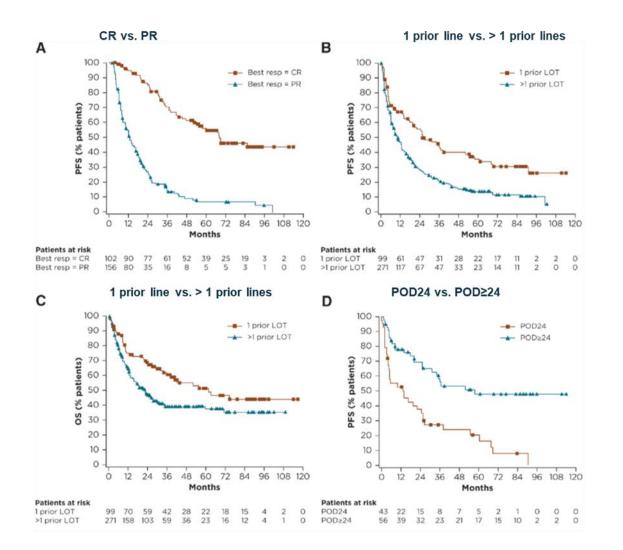
U

Survival curves for patients with early-POD.

Leukemia (2021) 35:787-795 https://doi.org/10.1038/s41375-020-01013-3

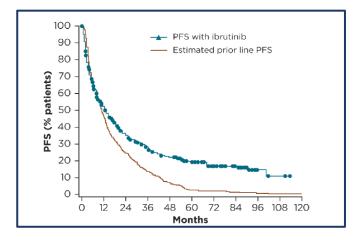

ARTICLE

Lymphoma


Outcomes in first relapsed-refractory younger patients with mantle cell lymphoma: results from the MANTLE-FIRST study

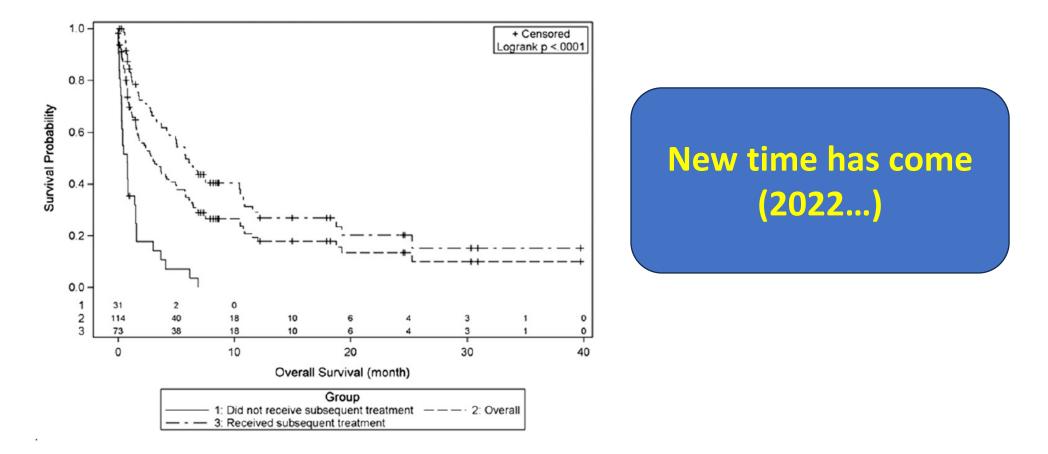
Carlo Visco 👩 • Alice Di Rocco² • Andrea Evangelista³ • Francesca Maria Quaglia 👩 • Maria Chiara Tisi⁴ •

Ibrutinib at first relapse: late versus early POD



Ibrutinib in RR-MCL: PFS and OS by status after first line of therapy

- Pooled analysis of ibrutinib treatment in R/R MCL (3 trials; 370 pts) @ FU of ~10 years [PCYC-1104, SPARK, RAY]
- Single-agent ibrutinib mitigates the historical trend of successive decline in PFS with each line of CIT regardless of age and prior LOT
- Patients achieving PFS > prior regimen:
 - low-risk sMIPI
 - non-bulky disease
 - non-blastoid histology
 - wild-type TP53



CLINICAL TRIALS AND OBSERVATIONS

Postibrutinib outcomes in patients with mantle cell lymphoma

Peter Martin,¹ Kami Maddocks,² John P. Leonard,¹ Jia Ruan,¹ Andre Goy,³ Nina Wagner-Johnston,⁴ Simon Rule,⁵ Ranjana Advani,⁶ David Iberri,⁶ Tycel Phillips,⁷ Stephen Spurgeon,⁸ Eliana Kozin,⁸ Katherine Noto,¹ Zhengming Chen,⁹ Wojciech Jurczak,¹⁰ Rebecca Auer,¹¹ Ewa Chmielowska,¹² Stephan Stilgenbauer,¹³ Johannes Bloehdorn,¹³ Craig Portell,¹⁴ Michael E. Williams,¹⁴ Martin Dreyling,¹⁵ Paul M. Barr,¹⁶ Selina Chen-Kiang,¹⁷ Maurizio DiLiberto,¹⁷ Richard R. Furman,¹ and Kristie A. Blum²

Current Treatment in Mantle Cell Lymphoma

Preferred First-line Treatment Options

Aggressive Chemotherapy

R-DHAP (cisplatin, or oxaliplatin) R-CHOP/R-DHAP (alternating) NORDIC (maxi-CHOP/R + HD cytarabine)

Less Aggressive Chemotherapy BR R-CHOP RBAC

Consolidation and Maintenance HDT + ASCT \rightarrow R maint for 3 yr

<u>Maintenance</u> After R-CHOP: R maint until Progression.

Preferred Second-line Treatment Options

Third-line

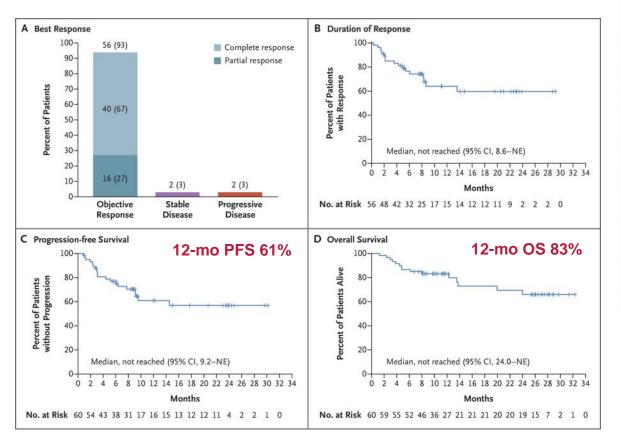
Treatment

Covalent BTK inhibitor

Ibrutinib

CAR-T (2022)

- Brexucabtagene autoleucel (after chemoimmunotherapy and BTK inhibitor by 3L)
 Non covalent BTK inhibitor (2024)
 - Pirtobrutinib (after covalent BTK inhibitor)



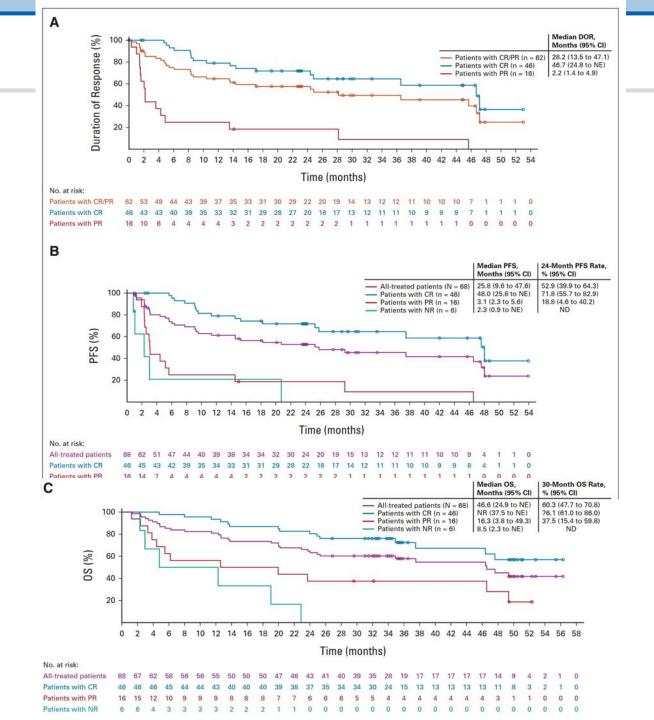
The NEW ENGLAND JOURNAL of MEDICINE April 1, 2020

ORIGINAL ARTICLE

KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma

M. Wang, J. Munoz, A. Goy, F.L. Locke, C.A. Jacobson, B.T. Hill, J.M. Timmerman, H. Holmes, S. Jaglowski, I.W. Flinn, P.A. McSweeney, D.B. Miklos, J.M. Pagel, M.-J. Kersten, N. Milpied, H. Fung, M.S. Topp, R. Houot, A. Beitinjaneh, W. Peng, L. Zheng, J.M. Rossi, R.K. Jain, A.V. Rao, and P.M. Reagan

Event	Any Grade	Grade 1	Grade 2	Grade 3	Grade 4	Grade	
			number of patie	ents (percent)			
Symptom of cytokine release syndrome							
Any	62 (91)	20 (29)	32 (47)	8 (12)	2 (3)	0	
Pyrexia	62 (91)	15 (22)	40 (59)	7 (10)	0	0	
Hypotension	35 (51)	4 (6)	16 (24)	14 (21)	1 (1)	0	
Hypoxemia	23 (34)	1 (1)	10 (15)	8 (12)	4 (6)	0	
Chills	21 (31)	12 (18)	9 (13)	0	0	0	
Tachycardia	16 (24)	11 (16)	5 (7)	0	0	0	
Headache	15 (22)	7 (10)	8 (12)	0	0	0	
Alanine aminotransferase increased	10 (15)	5 (7)	1 (1)	3 (4)	1 (1)	0	
Aspartate aminotransferase increased	9 (13)	4 (6)	0	5 (7)	0	0	
Fatigue	9 (13)	6 (9)	2 (3)	1 (1)	0	0	
Nausea	9 (13)	5 (7)	4 (6)	0	0	0	
Neurologic event	43 (63)	13 (19)	9 (13)	15 (22)	6 (9)	0	
Tremor	24 (35)	19 (28)	5 (7)	0	0	0	
Encephalopathy	21 (31)	5 (7)	3 (4)	7 (10)	6 (9)	0	
Confusional state	14 (21)	3 (4)	3 (4)	8 (12)	0	0	
Aphasia	10 (15)	3 (4)	4 (6)	3 (4)	0	0	

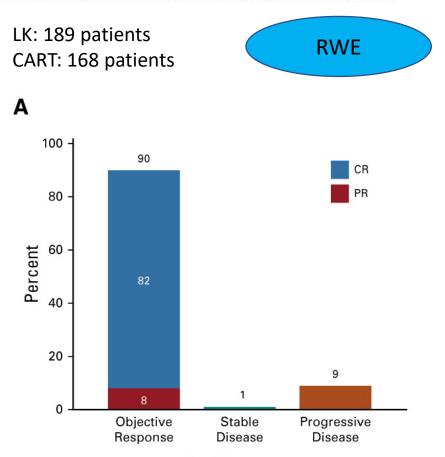

Journal of Clinical Oncology[®] June 4, 2022

Three-Year Follow-Up of KTE-X19 in Patients With Relapsed/Refractory Mantle Cell Lymphoma, Including High-Risk Subgroups, in the ZUMA-2 Study

Michael Wang, MD¹; Javier Munoz, MD, MS, MBA²; Andre Goy, MD, MS³; Frederick L. Locke, MD⁴; Caron A. Jacobson, MD, MMSc⁵; Brian T. Hill, MD, PhD⁶; John M. Timmerman, MD⁷; Houston Holmes, MD, MBA⁴; Samantha Jaglowski, MD⁹; Ian W. Flinn, MD, PhD¹⁰; Peter A. McSweeney, MB, ChB¹¹; David B. Miklos, MD, PhD¹²; John M. Pagel, MD, PhD, NbC, ¹³; Marie José Kersten, MD, PhD¹⁴; Krimo Bouabdallah, MD¹⁵; Rashmi Khanal, MD¹⁶; Max S. Topp, MD¹⁷; Roch Houot, MD, PhD, Nb¹⁸; Amer Beitinjaneh, MD¹⁹; Weimin Peng, PhD²⁰; Xiang Fang, PhD²⁰; Rhine R. Shen, PhD²⁰; Rubina Siddiqi, PhD²⁰; Ioana Kloos, MD²⁰; and Patrick M. Reagan, MD²¹

Patients with CR/PR mDOR 28.2 m (13.5 to 47.1)

All-treated patients mPFS 25.8 m (9.6 to 47.6)



All-treated patients mOS 46.6 m (24.9 to NE)

Journal of Clinical Oncology® February 08, 2023

Brexucabtagene Autoleucel for Relapsed or Refractory Mantle Cell Lymphoma in **Standard-of-Care Practice: Results From** the US Lymphoma CAR T Consortium

Yucai Wang, MD, PhD¹; Preetesh Jain, MBBS, MD, DM, PhD²; Frederick L. Locke, MD³; Matthew J. Maurer, DMSc¹ Matthew J. Frank, MD, PhD⁴; Javier L. Munoz, MD, MS, MBA⁵; Saurabh Dahiya, MBBS⁶; Amer M. Beitinjaneh, MD⁷; Miriam T. Jacobs, MD⁸; Joseph P. Mcguirk, MD, PhD⁹; Julie M. Vose, MD¹⁰; Andre Goy, MD¹¹; Charalambos Andreadis, MD, MSCE¹²; Brian T. Hill, MD, PhD¹³; Kathleen A. Dorritie, MD¹⁴; Olalekan O. Oluwole, MBBS, MPH¹⁵; Abhinav Deol, MD¹⁶; Jonas Paludo, MD¹; Bijal Shah, MD³; Trent Wang, DO, MPH⁷; Rahul Banerjee, MD¹²; David B. Miklos, MD⁴; Aaron P. Rapoport, MD⁶; Lazaros Lekakis, MD⁷; Armin Ghobadi, MD8; Sattva S. Neelapu, MD2; Yi Lin, MD, PhD1; Michael L. Wang, MD2; and Michael D. Jain, MD, PhD3

Subgroup	ORR (95%	CI)	CR Rate (95% CI)		
All (n = 168)	H+I I	90 (84 to 94)		82 (75 to 88)	
Blastoid/pleomorphic					
No (n = 100)		90 (82 to 95)		82 (73 to 89)	
Yes (n = 68)	⊢	90 (80 to 96)		82 (71 to 91)	
TP53 aberration	1				
No (n = 65)		91 (81 to 97)	بهب ا	88 (77 to 95)	
Yes (n = 61)		89 (78 to 95)	i	72 (59 to 83)	
Complex karyotype					
No (n = 80)	H e ⊢1	86 (77 to 93)		81 (71 to 89)	
Yes (n = 31)		87 (70 to 96)		74 (55 to 88)	
Ki-67 proliferation index					
< 30% (n = 34)		91 (76 to 98)		91 (76 to 98)	
30%-49% (n = 32)	⊢ _→	97 (84 to 100)	⊢	84 (67 to 95)	
≥ 50% (n = 86)	н е н	88 (80 to 94)	r terter terte terter terter terter terter terter terter terter terter terter terte terter terte terter terte terter ter	78 (68 to 86)	
Simplified MIPI risk group	i i		i		
Low risk (n = 55)	┝┼╺┥	95 (85 to 99)	┟─●┥	91 (80 to 97)	
Intermediate risk (n = 87)	-+	90 (81 to 95)		82 (72 to 89)	
High risk (n = 26)	·	81 (61 to 93)	·	65 (44 to 83)	
POD24	i		i		
No (n = 81)	r†⊷	94 (86 to 98)	┟┷╾┥	89 (80 to 95)	
Yes (n = 87)	H a H	86 (77 to 93)	⊢•+	76 (65 to 84)	
CNS involvement					
No (n = 152)	н <mark>н</mark> н	91 (85 to 95)		83 (76 to 89)	
Yes (n = 16)	⊢ −− ●┼┤	81 (54 to 96)	⊢ −− ●┼→	75 (48 to 93)	
BTKi history					
BTKi-naïve (n = 24)	<u>н н</u>	96 (79 to 100)		88 (68 to 97)	
BTKi-exposed (n = 144)	н <mark>н</mark>	89 (83 to 94)	H H	81 (74 to 87)	
BTKi-refractory ($n = 128$)	н н	89 (82 to 94)	⊢ i ri	80 (73 to 87)	
BTKi intolerance (n = 10)		80 (44 to 97)	,	80 (44 to 97)	
BTKi-sensitive $(n = 6)$		100 (54 to 100)	•	100 (54 to 100)	
ZUMA-2 eligibility					
Eligible (n = 39)		90 (76 to 97)	┝━┼━┥	85 (69 to 94)	
Ineligible (n = 129)	н÷н	90 (83 to 95)	H a H	81 (74 to 88)	
Ineligible because of BTKi- or anthracycline-/bend		96 (80 to 100)		96 (80 to 100)	
Ineligible because of disease status or comorbidit	ies (n = 103) 🛏 🕂	88 (81 to 94)	⊷+	78 (68 to 85)	
Bridging therapy	1				
No (n = 54)	н і вч	93 (82 to 98)		81 (69 to 91)	
Yes (n = 114)		89 (81 to 94)		82 (74 to 89)	
			· · · · · · · · · · · · · · · · · · ·		
	0 10 20 30 40 50 60 70 80 90100)	0 10 20 30 40 50 60 70 80 90100	0	

Best Response

Journal of Clinical Oncology® February 08, 2023

original report the US Lymphoma CAR T Consortium

Yucai Wang, MD, PhD¹; Preetesh Jain, MBBS, MD, DM, PhD²; Frederick L. Locke, MD³; Matthew J. Maurer, DMSc¹; Matthew J. Frank, MD, PhD⁴; Javier L. Munoz, MD, MS, MBA⁶; Saurabh Dahiya, MBBS⁶; Amer M. Beitinjaneh, MD⁷; Miriam T. Jacobs, MD⁸; Joseph P. Mcguirk, MD, PhD⁹; Julie M. Vose, MD¹⁰; Andre Goy, MD¹¹; Charalambos Andreadis, MD, MSCE¹²; Brian T. Hill, MD, PhD¹³; Kathleen A. Dorritie, MD¹⁴; Olalekan O. Oluwole, MBBS, MPH¹⁵; Abhinav Deol, MD¹⁶; Jonas Paludo, MD¹; Bijal Shah, MD⁹; Trent Wang, DO, MPH⁷; Rahul Banerjee, MD¹²; David B. Miklos, MD⁶; Aron P. Rapoport, MD⁶; Lazaros Lekakis, MD⁷; Armin Ghobadi, MD⁸; Sattva S. Neelapu, MD²; Yi Lin, MD, PhD¹; Michael L. Wang, MD²; and Michael D. Jain, MD, PhD³

" [...] efficacy and toxicity of brexu-cel were consistent with those reported in the ZUMA-2 trial [...]"

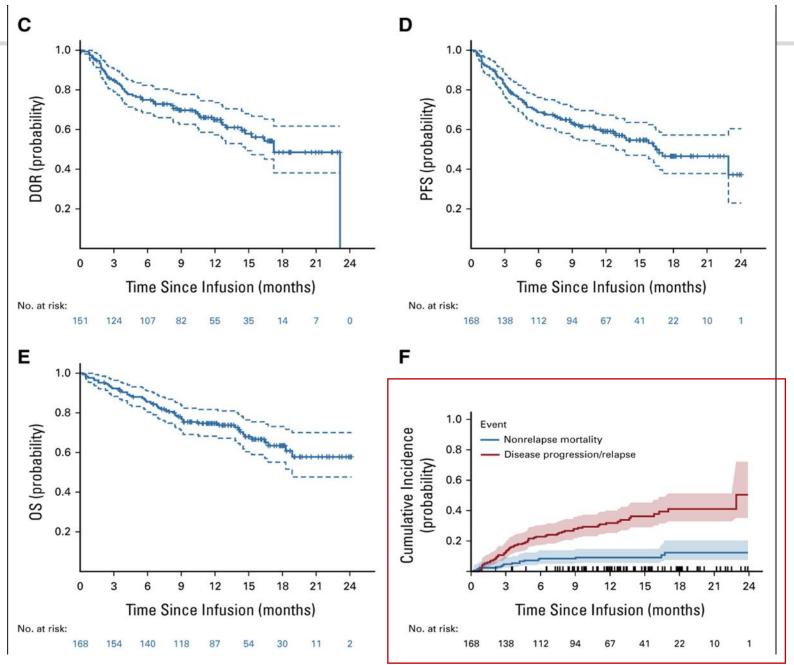
CRS and ICANS Incidences

Measurement	CRS	ICANS	CRS in ZUMA-2, %	Neurologic Events in ZUMA-2, %
Total, No. (%)	151 (90)	103 (61)	91	63
Maximum grade, No. (%)				
1-2	138 (82)	49 (29)	76	32
3-4	12 (7)	54 (32)	15	31
5	1(1)			
Days to onset, median (range)	4 (0-13)	6 (1-18)	2 (1-13)	7
Days to maximum grade, median (range)	5 (0-30)	8 (1-18)	-	
Duration in days, median (range)	5 (1-33)	6 (1-144+) ^a	11	12
	1	Management of CRS	and/or ICANS	
Tocilizumab	129 (77) ^b		In ZUMA-2, for CRS: 59%	In ZUMA-2, for neurologic event: 26%
Tocilizumab doses, No., median (range)	2 (1-4)			
Corticosteroids	116 (69)		In ZUMA-2, for CRS: 22%	In ZUMA-2, for neurologic event: 38%
Anakinra ^c	28 (17)			
Siltuximab ^d	5 (3)			

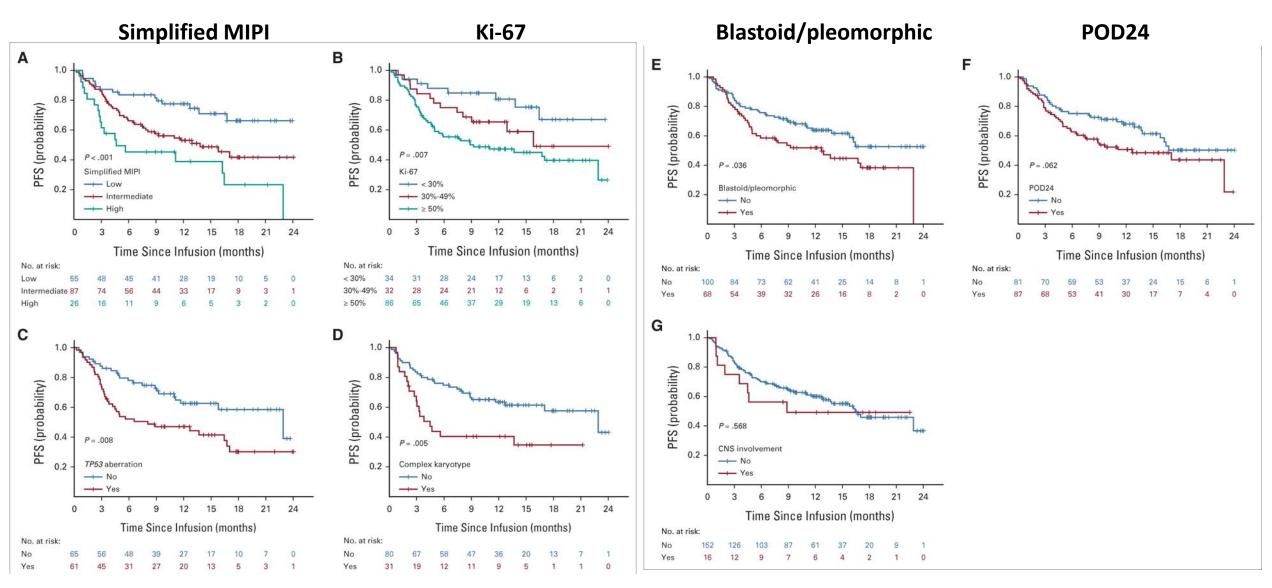
	205	S 22. 1		1237	92	Q1991 337
ier	Adverse	Events	and	Management	of	Interest

Adverse Event/Management	No. (%)	Adverse Event/Management	Day 30, No./n (%)	Day 90, No./n (%)
ICU admission	34 (20)	Hemoglobin < 8 g/dL	13/164 (8)	8/146 (5)
ICU days, median (range)	3 (1-12)	Platelet $<$ 50,000/µL	70/164 (43)	16/146 (11)
Vasopressors	18 (11)	ANC $< 1,000/\mu$ L	54/164 (33)	27/146 (18)
Mechanical ventilation	5 (3)	$ANC < 500/\mu L$	23/164 (14)	9/146 (6)
Dialysis	4 (2)	Infections	Days 0-30: 35/168 (21)	Days 31-90: 19/164 (12)

Abbreviations: ANC, absolute neutrophil count; CRS, cytokine release syndrome; ICANS, immune effector cell-associated neurotoxicity syndrome; ICU, intensive care unit.


"At day 90, 12 (8%) of 154 patients reported ongoing cognitive deficits of varying degrees.

Oth


^bFifty-four of 71 patients (76%) with maximum grade 1 CRS received tocilizumab, of which 26 had maximum grade 1 ICANS and 28 had grade 2 or higher ICANS. ^cAnkinra was used for CRS (n = 4), ICANS (n = 16), both CRS and ICANS (n = 6), possible macrophage activation syndrome (n = 1), or suspected hemophagocytic lymphohistiocytosis (n = 1). Tocilizumab and corticosteroids were used in all these patients.

⁴Siltuximab was used for CRS (n = 2, in the setting of tocilizumab shortage), ICANS (n = 2), or both (n = 1, in the setting of tocilizumab shortage). ⁶One patient was on dialysis at baseline. For the three patients who started dialysis after CAR T-cell infusion, one died of grade 5 CRS, one died of multiorgan failure, and one recovered renal function.

'Bacterial, fungal, or viral infections that required antimicrobial treatment. Prophylactic antimicrobial use without infection was not counted.

Journal of Clinical Oncology®

TP53 aberrations

Complex Karyotype

CNS involvement

Wang Y. et al, J Clin Oncol 2023

Volume 30 | September 2024 |:

David M. Cordas dos Santos^{1,2,3,4,11}, Tobias Tix^{4,11}, Roni Shouval^{5,6}, Anat Gafter-Gvili [©]^{7,8}, Jean-Baptiste Alberge^{1,2,3}, Edward R. Scheffer Cliff [©]^{1,2,9}, Sebastian Theurich [©]^{4,10}, Michael von Bergwelt-Baildon^{4,10}, Irene M. Ghobrial [©]^{1,2,3}, Marion Subklewe^{4,10}, Miguel-Angel Perales [©]^{5,6} & Kai Rejeski [©]^{4,5,6,10}

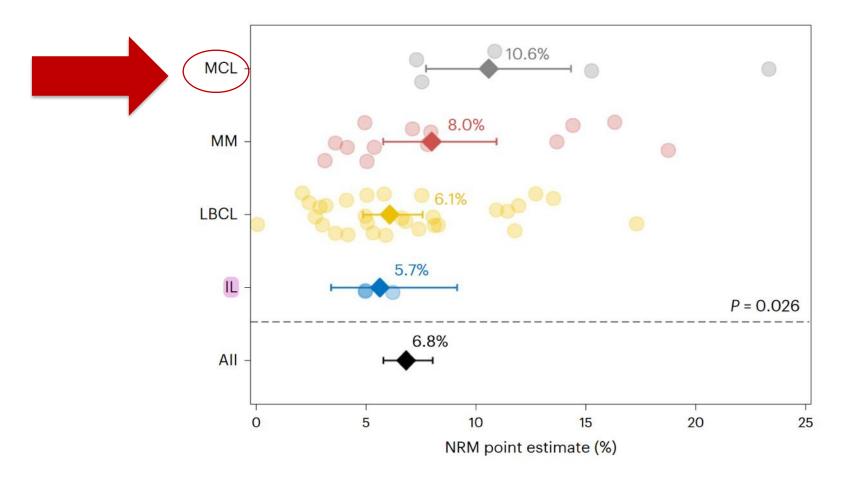
A focus on toxicity...

Entity	Study	Author, ref.	Year	Treatment	Product	Cohort	Number	Follow-up	Reported	NRM point	Therapy	Inclusion
	·			setting		size	of deaths	(months)	NRM (%)	estimate (%)	line	before/ after 2020
IL	ELARA	Dreyling et al. ³³	2024	Phase I–II	Tisa-Cel	97	5	29	N/R	5.15	Later	After
IL	ZUMA-5	Jacobson et al. ³⁴	2022A	Phase I–II	Axi-Cel	148	9	17.5	N/R	6.08	Later	After
	TRANSCEND NHL 001	Abramson et al. ³⁵	2020	Phase I–II	Liso-Cel	269	7	18.8	N/R	2.60	Later	Before
	BELINDA	Bishop et al. ³⁶	2022	Phase III	Tisa-Cel	155	9	40.3	N/R	5.80	Earlier	After
	ALYCANTE	Houot et al. ³⁷	2023	Phase I–II	Axi-Cel	62	7	12	N/R	11.29	Earlier	After
	TRANSFORM	Kamdar et al. ³⁸	2022	Phase III	Liso-Cel	92	5	6.2	N/R	5.43	Earlier	After
LBCL	JapicCTI-183914	Kato et al. ³⁹	2022	Phase I–II	Axi-Cel	16	0	13.4	N/R	0.00	Later	After
	ZUMA-12	Neelapu et al. ⁴⁰	2022	Phase I–II	Axi-Cel	40	2	15.9	N/R	5.00	Earlier	After
	ZUMA-1	Neelapu et al. ⁴¹	2023	Phase I–II	Axi-Cel	101	13	63.1	N/R	12.87	Later	Before
	PILOT	Sehgal et al. ⁴²	2022	Phase I–II	Liso-Cel	61	4	13	N/R	6.56	Earlier	After
	ZUMA-7	Westin et al. ⁴³	2023	Phase III	Axi-Cel	170	23	47.2	N/R	13.53	Earlier	Before
	CRB-401	Lin et al. ⁴⁴	2023	Phase I-II	Ide-Cel	62	2	18.1	N/R	3.23	Later	Before
	CARTITUDE-1	Martin et al. ⁴⁵	2023	Phase I-II	Cilta-Cel	97	16	28	N/R	16.49	Later	Before
MM	CARTIFAN-1	Mi et al. ⁴⁶	2022	Phase I-II	Cilta-Cel	48	9	18	N/R	18.75	Later	After
	KarMMa	Munshi et al.47	2021	Phase I–II	Ide-Cel	128	9	13.3	N/R	7.03	Later	Before
	KarMMa-3	Rodriguez-Otero et al. ⁴⁸	2023	Phase III	Ide-Cel	225	18	18.6	N/R	8.00	Earlier	After
	CARTITUDE-4	San-Miguel et al. ⁴⁹	2023	Phase III	Cilta-Cel	176	24	15.9	N/R	13.64	Earlier	After
MCL	ZUMA-2	Wang et al. ⁵⁰	2023	Phase I–II	Brexu-Cel	68	5	35.6	N/R	7.35	Later	Before

N/R, not reported.

David M. Cordas dos Santos^{1,2,3,4,11}, Tobias Tix^{4,11}, Roni Shouval^{5,6}, Anat Gafter-Gvili [®]^{7,8}, Jean-Baptiste Alberge^{1,2,3}, Edward R. Scheffer Cliff [®]^{1,2,9}, Sebastian Theurich [®]^{4,10}, Michael von Bergwelt-Baildon^{4,10}, Irene M. Ghobrial [®]^{1,2,3}, Marion Subklewe^{4,10}, Miguel-Angel Perales [®]^{5,6} & Kai Rejeski [®]^{4,5,6,10}

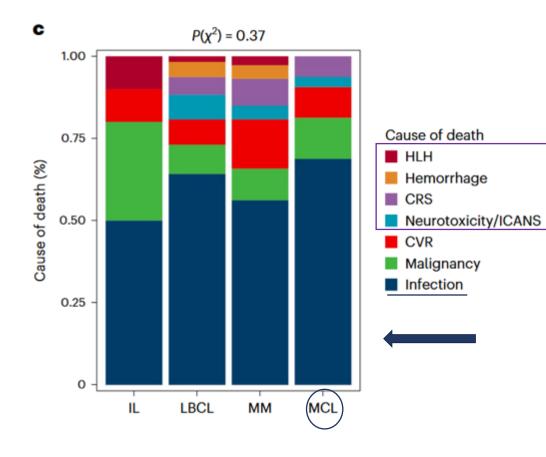
nature medicine

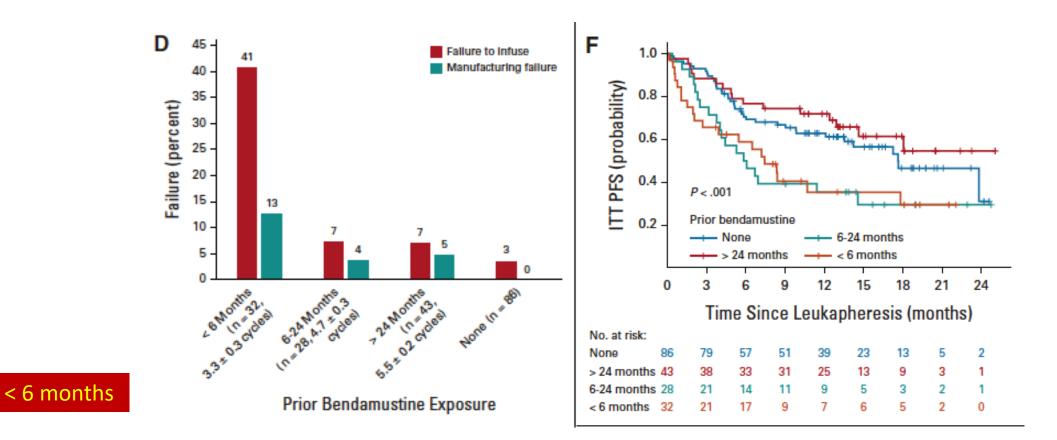

| Volume 30 | September 2024 | 1

Entity	Author, ref.	Year	Cohort	Product	Cohort size	Number of deaths	Follow-up (months)	Reported NRM (%)	NRM point estimate (%)	Therapy line	Inclusion before/ after 2020
	Chong et al. ⁷¹	2024		Brexu-Cel	17	4	24.5	N/R	23.53	Later	After
	lacoboni et al. ⁷²	2022		Brexu-Cel	33	5	10.1	N/R	15.15	Later	After
MCL	Rejeski et al. ¹²	2023		Brexu-Cel	54	4	15.4 ^b	N/R	7.41	Later	After
	Wang et al. ⁷³	2023		Brexu-Cel	168	18	14.3	9.1	10.71	Later	After

David M. Cordas dos Santos^{1,2,3,4,11}, Tobias Tix^{4,11}, Roni Shouval^{5,6}, Anat Gafter-Gvili [®]^{7,8}, Jean-Baptiste Alberge^{1,2,3}, Edward R. Scheffer Cliff [®]^{1,2,9}, Sebastian Theurich [®]^{4,10}, Michael von Bergwelt-Baildon^{4,10}, Irene M. Ghobrial [®]^{1,2,3}, Marion Subklewe^{4,10}, Miguel-Angel Perales [®]^{5,6} & Kai Rejeski [®]^{4,5,6,10}

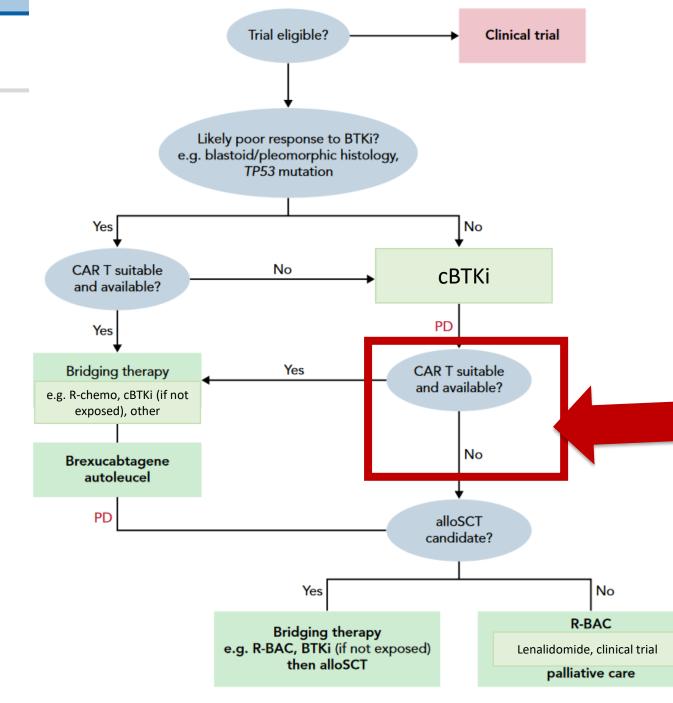
nature medicine


| Volume 30 | September 2024 | 1


David M. Cordas dos Santos^{1,2,3,4,11}, Tobias Tix^{4,11}, Roni Shouval^{5,6}, Anat Gafter-Gvili ⁰^{7,8}, Jean-Baptiste Alberge^{1,2,3}, Edward R. Scheffer Cliff ^{1,2,9}, Sebastian Theurich ^{4,10}, Michael von Bergwelt-Baildon^{4,10}, Irene M. Ghobrial ^{1,2,3}, Marion Subklewe^{4,10}, Miguel-Angel Perales ^{5,6} & Kai Rejeski ^{4,5,6,10}

nature medicine

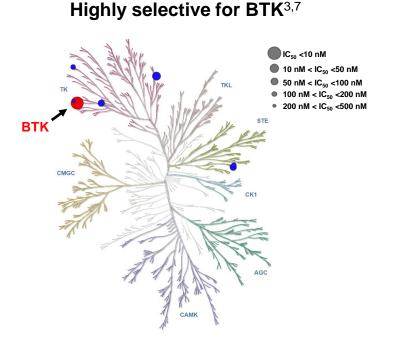
| Volume 30 | September 2024 |


Brexu-cel in RWE: impact of prior bendamustine exposure

6 -24 months

Subgroup	CR Rate (95% CI)	
No prior bendamustine (n = 86)	▶ •••	84 (74 to 91)
Prior bendamustine (n = 103)	⊢ •–i	64 (54 to 73)
Bendamustine within 6 months (n = 32)		47 (29 to 65)
Bendamustine within 6-24 months (n = 28)	┝━━╋╋╋	64 (44 to 81)
Bendamustine > 24 months before (n = 43)	r=i•=-1	77 (61 to 88)
0	10 20 30 40 50 60 70 80 90 100	

Wang Y. et al, J Clin Oncol 2023

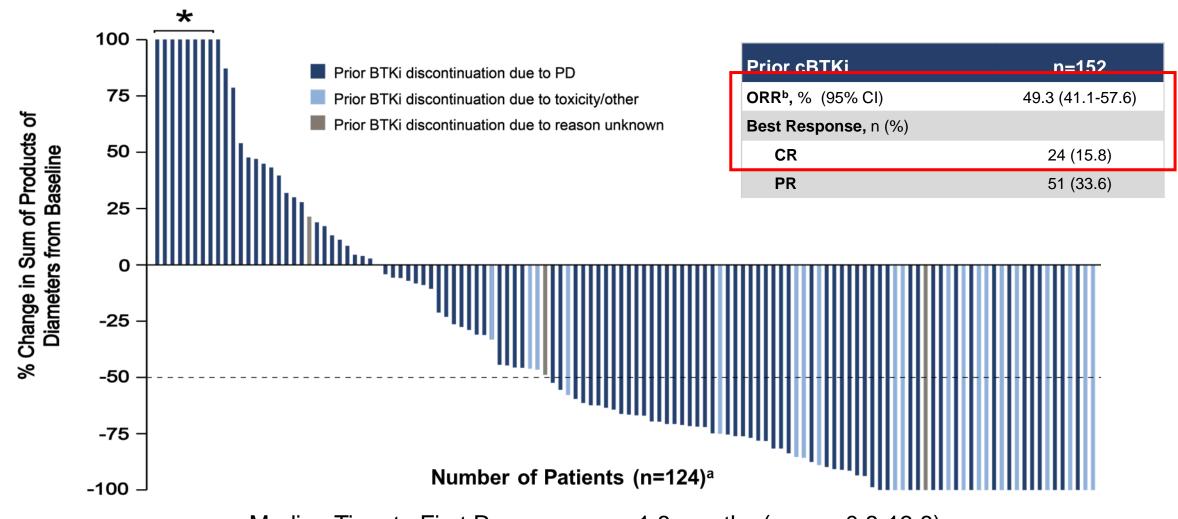

LYMPHOID NEOPLASIA

Therapeutic options for relapsed/refractory mantle cell lymphoma

Toby A. Eyre,¹ Chan Y. Cheah,^{2,3} and Michael L. Wang⁴

Pirtobrutinib è prescrivibile per il "trattamento di pazienti adulti affetti da linfoma a cellule mantellari (mantle cell lymphoma, MCL) recidivante o refrattario che sono stati **precedentemente trattati con un inibitore della tirosin chinasi di Bruton** (Bruton's tyrosine kinase, BTK)".

Pirtobrutinib is a Highly Selective, Non-Covalent (Reversible) BTK Inhibitor

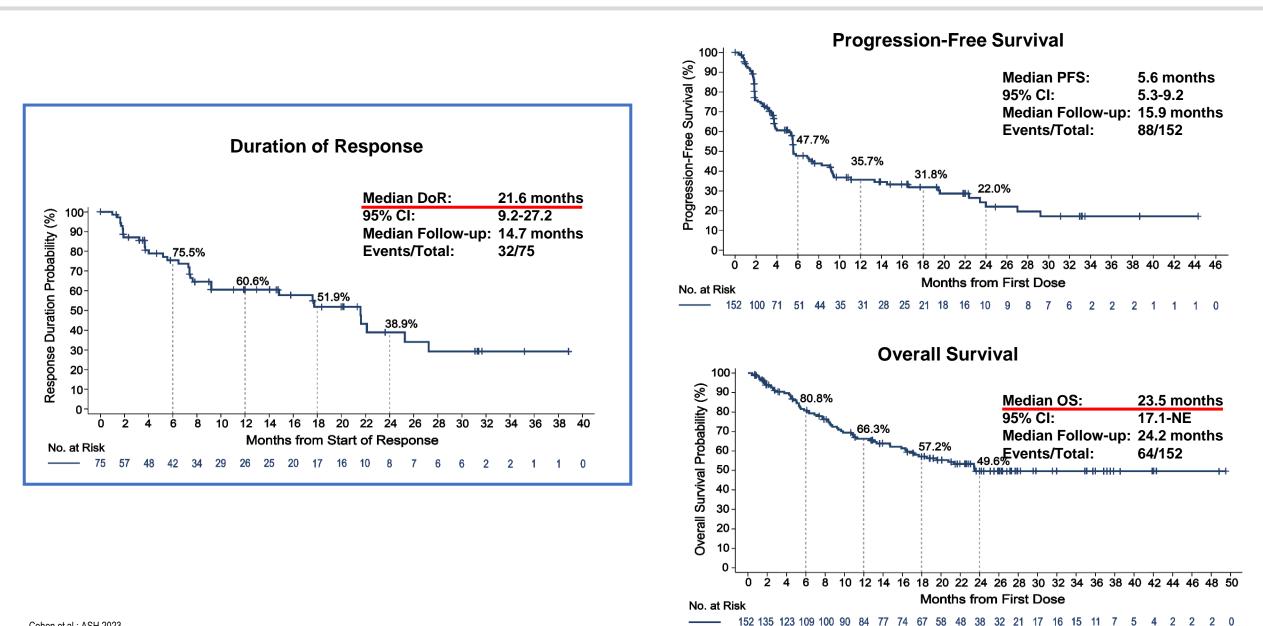


- Inhibits both WT and C481-mutant BTK with equal low nM potency⁸
- Steady state plasma exposure corresponding to 96% BTK target inhibition and a half-life of about 20 hours⁸
- In contrast to cBTKi (A), pirtobrutinib (B) appears to <u>stabilize BTK in a closed, inactive conformation</u>, blocking access to upstream kinases and phosphorylation of Y551, thus inhibiting scaffolding interactions that support kinase-independent BTK signaling⁸

³Mato et al. Lancet 2021; 397: 892–901. ⁷Brandhuber et al. Clin Lymphoma Myeloma Leuk 2018; 18(Suppl.1):S216. ⁸Gomez et al. Blood.2023; 142(1):62-72.

Cohen et al.; ASH 2023

Pirtobrutinib Efficacy in Patients with MCL who Received Prior cBTKi



Median Time to First Response was 1.8 months (range: 0.8-13.8)

Data of patients with baseline and at least one evaluable post baseline tumor measurement. *Patients with >100% increase in SPD. aData for 28/152 patients who received prior cBTKi are not shown in the waterfall plot due to no measurable target lesions identified by CT at baseline, discontinuation prior to first response assessment, or lack of adequate imaging in follow-up. bORR is the number of patients with best response of CR or PR divided by the total number of patients; 13 patients with a best response of not evaluable (NE) are included in the denominator. Response status per Lugano 2014 criteria based on IRC assessment.

Cohen et al.; ASH 2023

Pirtobrutinib Outcomes in Prior cBTKi Patients with MCL

Pirtobrutinib Safety Profile in MCL Patients

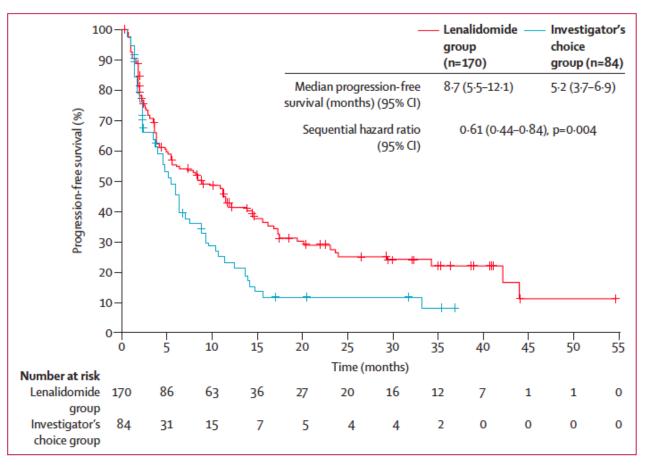
	Treatment-Emergent AEs in Patients with MCL (n=166)						
	All Cause AE	s, (≥15%), %	Treatment-Re	lated AEs, %			
Adverse Event	Any Grade	Grade ≥3	Any Grade	Grade ≥3			
Fatigue	31.9	3.0	21.1	2.4			
Diarrhea	22.3	0.0	12.7	0.0			
Dyspnea	17.5	1.2	9.0	0.6			
Anemia	16.9	7.8	7.2	2.4			
Platelet Count Decreased	15.1	7.8	7.8	3.0			
AEs of Interest ^a	Any Grade	Grade ≥3	Any Grade	Grade ≥3			
Infections ^b	42.8	19.9	15.7	3.6			
Bruising ^c	16.3	0.0	11.4	0.0			
Rash ^d	14.5	0.6	9.0	0.0			
Arthralgia	9.0	1.2	2.4	0.0			
Hemorrhage ^e	10.2	2.4	4.2	0.6			
Hypertension	4.2	0.6	1.8	0.0			
Atrial Fibrillation/Flutter ^{f,g}	3.6	1.8	0.6	0.0			

Median time on treatment was 5.5 months for the MCL cohort

Discontinuations due to TRAEs occurred in **3%** (n=5) of patients with MCL **Dose reductions** due to TRAEs occurred in **5%** (n=8) of patients with MCL

^aAEs of interest are those that were previously associated with covalent BTK inhibitors. ^bAggregate of all preferred terms including infection and COVID-19. ^cAggregate of contusion, bone contusion, ecchymosis, and increased tendency to bruise. ^dAggregate of all preferred terms including rash. ^eAggregate of all preferred terms including hemorrhage or hematoma. ^fAggregate of atrial fibrillation and atrial flutter. ^gOf 6 total atrial fibrillation and atrial flutter TEAEs, 3 occurred in patients with a prior medical history of atrial fibrillation. In the MCL cohort, treatment-related AEs leading to discontinuation included weight decrease/alopecia/fatigue (1), neutropenia (1), platelet count decreased (1), pneumonitis (1).

Cohen et al.; ASH 2023


Lenalidomide versus investigator's choice in relapsed or refractory mantle cell lymphoma (MCL-002; SPRINT): a phase 2, randomised, multicentre trial

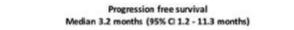
Marek Trněný, Thierry Lamy, Jan Walewski, David Belada, Jiri Mayer, John Radford, Wojciech Jurczak, Franck Morschhauser, Julia Alexeeva, Simon Rule, Boris Afanasyev, Kamil Kaplanov, Antoine Thyss, Alexej Kuzmin, Sergey Voloshin, Kazimierz Kuliczkowski, Agnieszka Giza, Noel Milpied, Caterina Stelitano, Reinhard Marks, Lorenz Trümper, Tsvetan Biyukov, Meera Patturajan, Marie-Laure Casadebaig Bravo, Luca Arcaini, on behalf of the SPRINT trial investigators and in collaboration with the European Mantle Cell Lymphoma Network

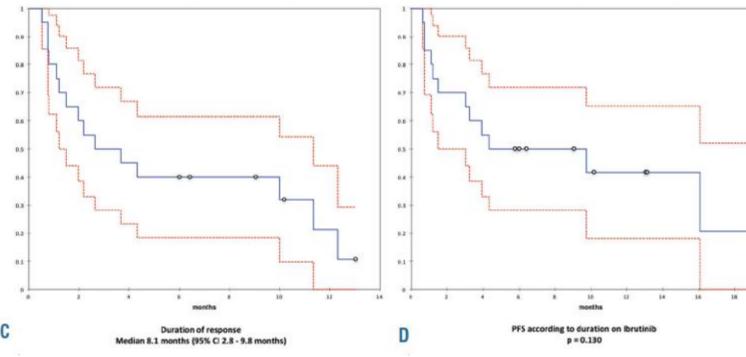
THE LANCET Oncology

Volume 17, Issue 3, March 2016, Pages 319-331

FURTHER OPTIONS: LENALIDOMIDE (L648)

Figure 2: Progression-free survival with lenalidomide compared with investigator's choice in relapsed or refractory mantle cell lymphoma (central review)


	Central review		
	Lenalidomide group (n=170)	Investigator's choice group (n=84)	p value
Median progression-free survival, months (95% CI)*	8.7 (5.5–12.1)	5·2 (3·7–6·9)	0.004
Response data			
Proportion of patients who achieved an objective response (n [%, 95% CI])	68 (40%, 33–48)	9 (11%, 5–19)	<0.001
Complete response and unconfirmed complete response	8 (5%)	0	0.043
Partial response	60 (35%)	9 (11%)	
Stable disease	50 (29%)	44 (52%)	
Progressive disease	34 (20%)	26 (31%)	
Response not done or missing†	18 (11%)	5 (6%)	


FURTHER OPTIONS: VENETOCLAX (NPP)

A

LETTERS TO THE EDITOR

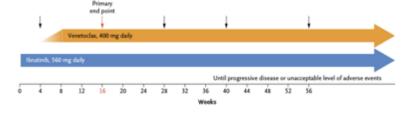
Efficacy of venetoclax monotherapy in patients with relapsed, refractory mantle cell lymphoma after Bruton tyrosine kinase inhibitor therapy

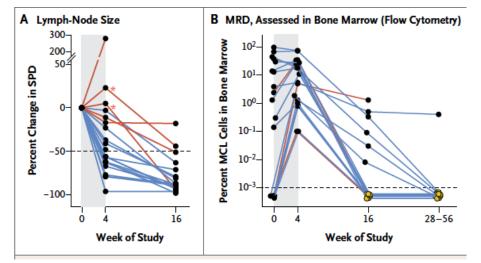
B

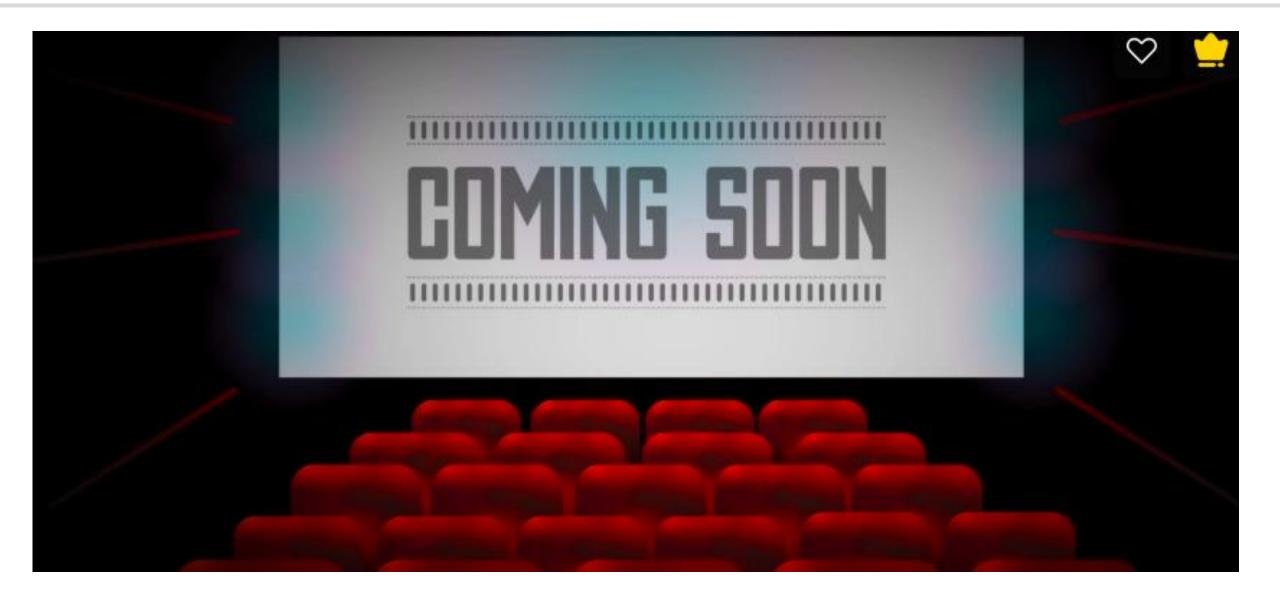
haematologica 2019; 104:e68

Toby A. Eyre, ' Harriet S. Walter,² Sunil Iyengar,³ George Follows,⁴ Matthew Cross,³ Christopher P. Fox,⁵ Andrew Hodson,⁴ Josh Coats,⁷ Santosh Narat,⁸ Nick Morley,⁴ Martin J.S. Dyer² and Graham P. Collins⁴

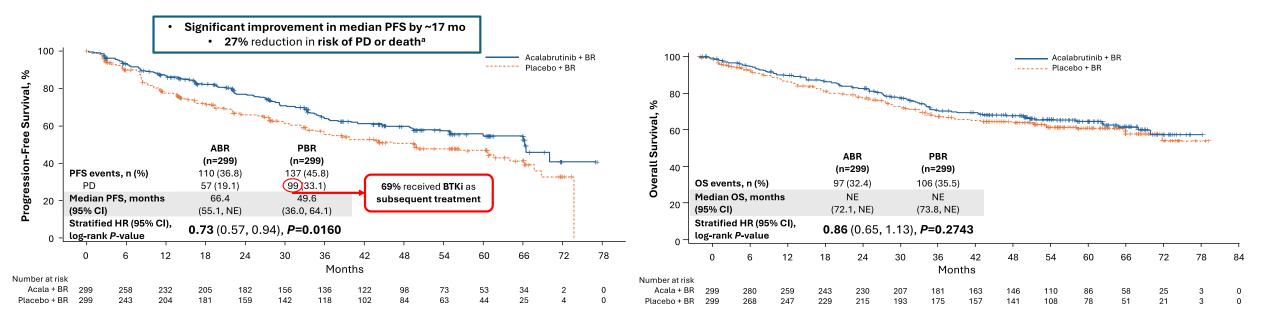
Overall survival


Median 9.4 months (95% CI 1.5 months - NR)

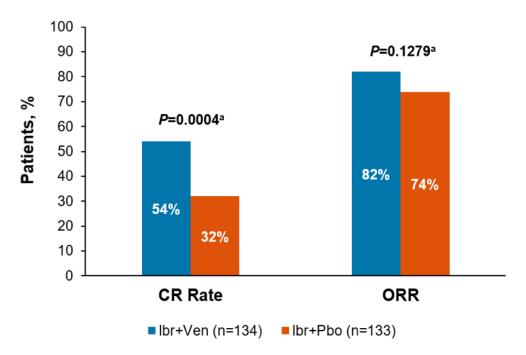


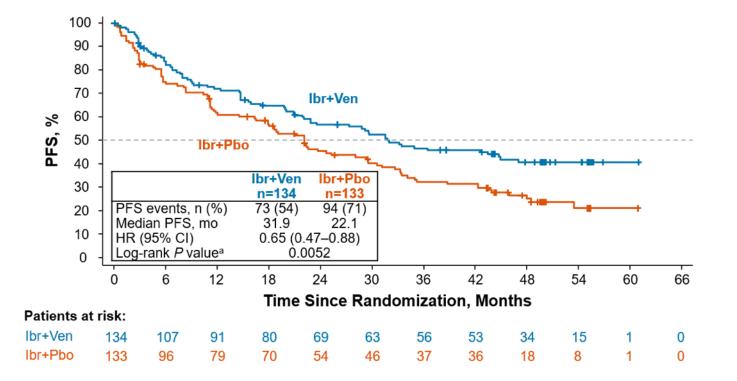

ORIGINAL ARTICLE

Ibrutinib plus Venetoclax for the Treatment of Mantle-Cell Lymphoma

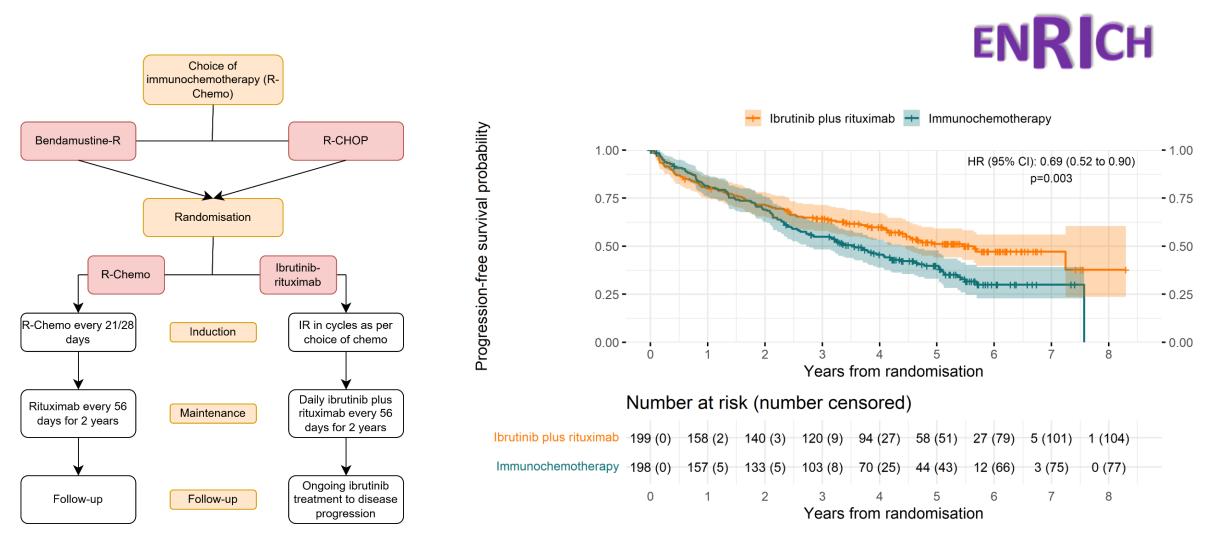

Constantine S. Tam, M.B., B.S., M.D., Mary Ann Anderson, M.B., B.S., Ph.D., Christiane Pott, M.D., Ph.D., Rishu Agarwal, M.B., B.S., Sasanka Handunnetti, M.B., B.S., Rodney J. Hicks, M.B., B.S.,
Kate Burbury, M.B., B.S., Gillian Turner, B.N., M.I.P.H., Juliana Di Iulio, Ph.D.,
Mathias Bressel, M.Sc., David Westerman, M.B., B.S., Stephen Lade, M.B., B.S., Martin Dreyling, M.D., Sarah-Jane Dawson, M.B., B.S., Ph.D.,
Mark A. Dawson, M.B., B.S., Ph.D., John F. Seymour, M.B., B.S., Ph.D., and Andrew W. Roberts, M.B., B.S., Ph.D.

Coming soon: chemo-containing triplets -> Acala-BR (ECHO first-line)


Median follow-up of 45 months.

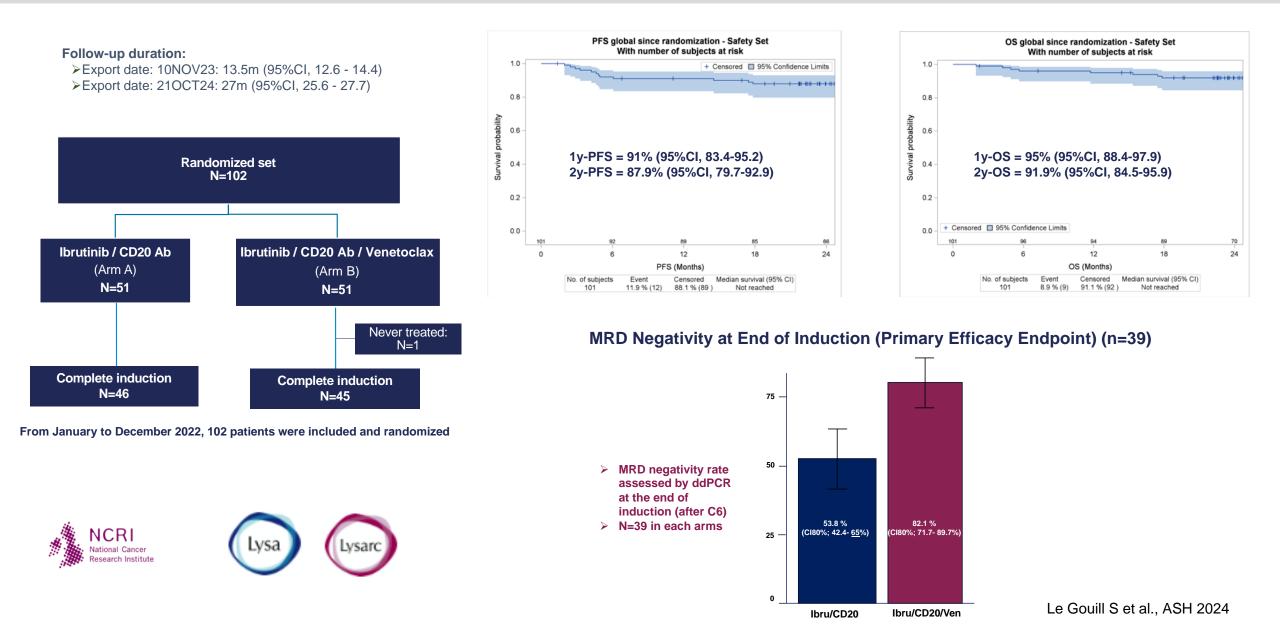

ABR, acalabrutinib + bendamustine + rituximab; BR, bendamustine + rituximab; CI, confidence interval; HR, hazard ratio; NE, not estimable; OS, overall survival; PBR, placebo

+ bendamustine + rituximab.

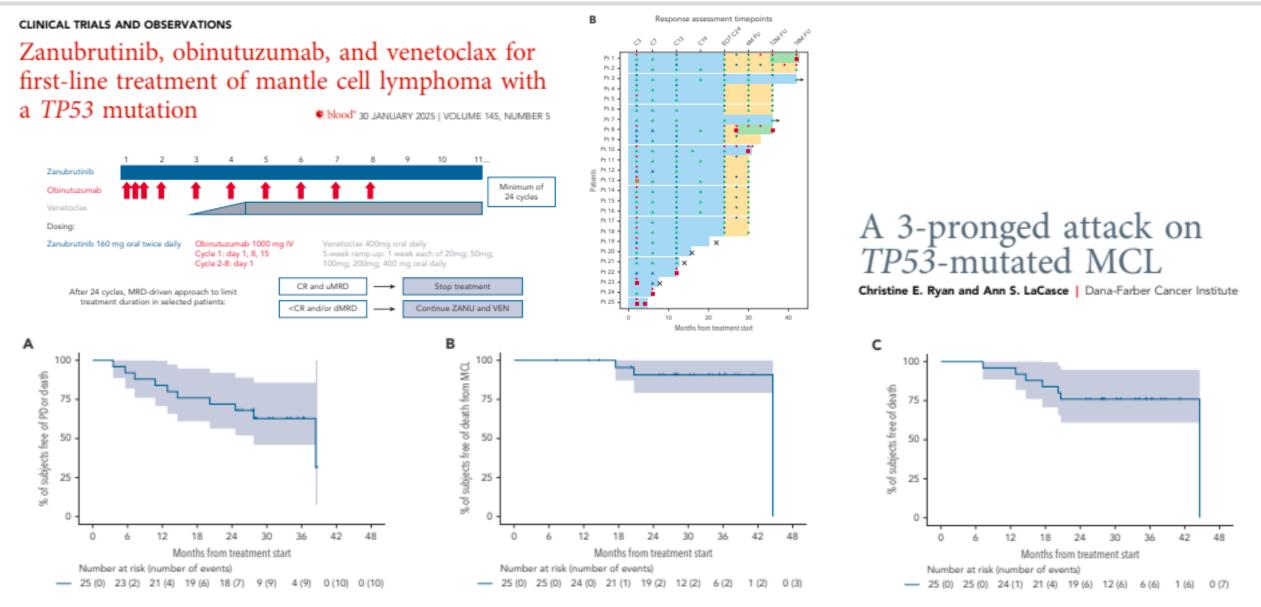

Wang M et al., EHA 2024

Coming soon: chemo-free **doublets** -> IV (SYMPATICO R/R)

Coming soon: chemo-free **doublets** -> IR (first-line)

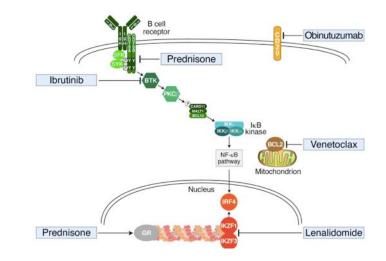


PFS median (95% Cl) IR: 65.3 mo (52.7 to not evaluable) R-chemo: 42.4 mo (32.7 to 55.3)

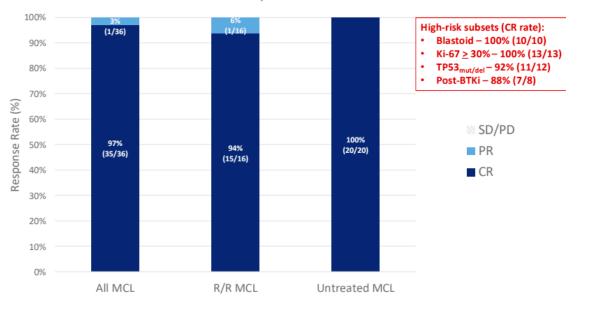

Median Follow up 47.9 months

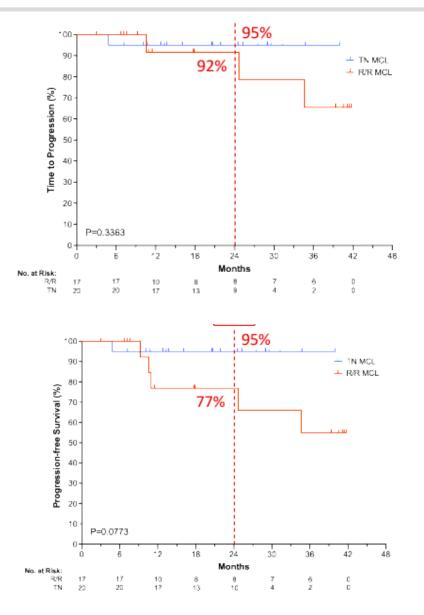
Lewis DJ et al., ASH 2024

Coming soon: chemo-free triplets -> IVR (OASIS II first-line)



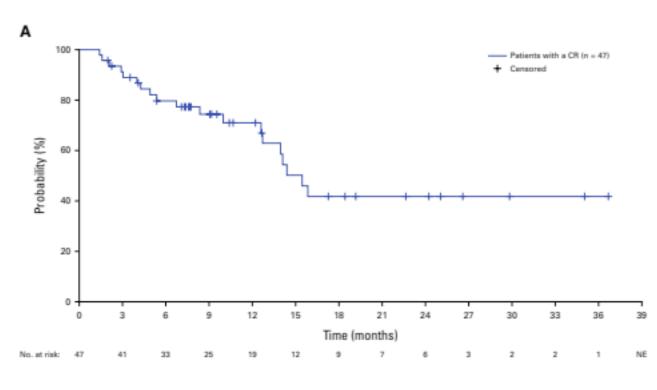
Coming soon: chemo-free triplets in HR patients -> BOVen (first-line)

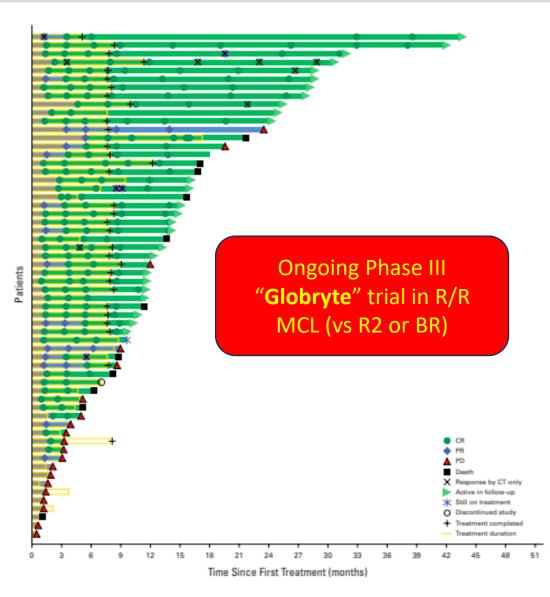



Kumar A et al., Blood 2025

Coming soon: chemo-free quintuplets -> ViPOR (R/R & first-line)

Best Overall Response

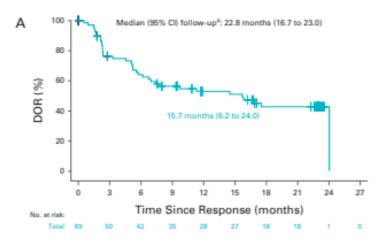



Median (range) follow-up = 27.6 (3.1-57.5) mo. Melani C et al., ASH 2024

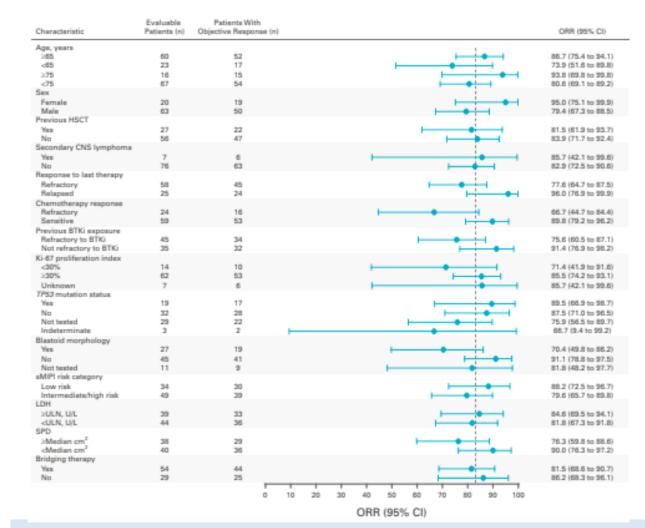
Coming soon: Glofitamab in R/R MCL (NP 30179)

Glofitamab in Relapsed/Refractory Mantle Cell Lymphoma: Results From a Phase I/II Study

Tycel Jovelle Phillips, MD^{1,2} (); Carmelo Carlo-Stella, MD² (); Franck Morschhauser, MD, PhD⁴ (); Emmanuel Bachy, MD, PhD⁶ (); Michael Crump, MD, FRCPC⁶; Marek Tmený, MD⁷ (); Nancy L. Bartlett, MD⁶ (); Jan Zaucha, MD, PhD⁶, Tomasz Wrobel, PhD¹⁰; Fritz Offner, MD, PhD¹¹; Kathryn Humphrey, BSc¹²; James Relf, MD¹²; Audrey Filézac de L'Etang, PhD¹³; David J. Carlile, PhD¹²; Ben Byrne, MSc¹²; Naseer Qayum, MBChB, DPhil¹²; Linda Lundberg, PhD¹³; and Michael Dickinson, MBBS, DMedSc¹⁴ ()




Duration of CR


Coming soon: Liso-cel in R/R MCL (TRANSCEND NHL 001)

Lisocabtagene Maraleucel in Relapsed/Refractory Mantle Cell Lymphoma: Primary Analysis of the Mantle Cell Lymphoma Cohort From TRANSCEND NHL 001, a Phase I Multicenter Seamless Design Study

Michael Wang, MD¹ (**b**); Tanya Siddiqi, MD, MBBS² (**c**); Leo I. Gordon, MD² (**c**); Manali Kamdar, MD, MBBS⁴; Matthew Lunning, DD⁵; Alexandre V. Hirayama, MD⁶ (**c**); Jeremy S. Abramson, MD, MMSc² (**c**); Jon Arnason, MD⁸; Nilanjan Ghosh, MD, PhD⁶; Amitkumar Mehta, MD¹⁰; Charalambos Andreadis, MD, MS¹¹; Scott R. Solomon, MD¹² (**c**); Ana Kostic, MD¹²; Christine Dehner, BSc¹²; Ricardo Espinola, MD¹⁴; Lily Peng, MS¹²; Ken Ogasawara, PhD, MPH¹⁵ (**c**); Amy Chattin, PhD¹² (**c**); Laurie Eliason, MPH¹⁵; and M. Lia Palomba, MD¹⁶ (**c**)

Relevance (J.W. Friedberg)

Liso-cel represents a novel treatment option for patients with MCL refractory to Bruton tyrosine kinase inhibition, including patients with CNS involvement. Given the favorable toxicity profile, future studies should evaluate this treatment earlier in the disease course.*

MCL treatment algorithm (2025): Conclusions and Take-home messages - 1

The therapeutic landscape is rapidly evolving

First line **YOUNGER** patients:

- Intensified protocols containing R-Ara-C + ASCT remain the standard altought <u>the integration of ibrutinib</u> with the omission of ASCT has to be considered (off-label/648; HR patients)
- <u>Maintenance</u> in first-line MCL is crucial (rituximab + ibrutinib)

First line **ELDERLY** patients:

- <u>BR + R maintenance</u> is the standard therapy for the majority of patients, however:
- <u>R-BAC500</u> is an effective, limited duration alternative for FIT patients
- <u>FIT and HR patients</u> should be considered for a TRIANGLE-like schedule

RELAPSED/REFRACTORY patients:

- <u>Ibrutinib</u> is the standard of care in controlling the disease in 2nd line for most patients
- Relapse after ibrutinib still represent an unmet clinical need but salvage options are increasing
- Those patients should be early considered for <u>CAR-T</u> (balancing foreseeable efficacy and toxicities)
- For patients not candidate to CAR-T pirtobrutinib represents a novel, safe and valuable option

CHALLENGES

- <u>High risk features</u> (*TP53*, Ki67, blastoid, MIPI, POD24) maintain a dismal prognostic role in the CAR-T era
- A risk-tailored approach should be implemented (anticipation of novel treatment strategies? MRD?)
- Several, effective, <u>novel non-chemotherapeutic</u> combinations are coming
- <u>Bispecific</u> antibodies (safe, effective) will soon have a major role
- Is there a role for allogeneic stem cell transplantation in this evolving scenario?

Thank you !

